Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Combination chemical genetics

Abstract

Predicting the behavior of living organisms is an enormous challenge given their vast complexity. Efforts to model biological systems require large datasets generated by physical binding experiments and perturbation studies. Genetic perturbations have proven important and are greatly facilitated by the advent of comprehensive mutant libraries in model organisms. Small-molecule chemical perturbagens provide a complementary approach, especially for systems that lack mutant libraries, and can easily probe the function of essential genes. Though single chemical or genetic perturbations provide crucial information associating individual components (for example, genes, proteins or small molecules) with pathways or phenotypes, functional relationships between pathways and modules of components are most effectively obtained from combined perturbation experiments. Here we review the current state of and discuss some future directions for 'combination chemical genetics', the systematic application of multiple chemical or mixed chemical and genetic perturbations, both to gain insight into biological systems and to facilitate medical discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combined perturber studies in the context of forward and reverse genetics.
Figure 2: Measuring synergy for chemical combinations.
Figure 3: The response shape in dose matrix experiments depends on target connectivity.
Figure 4: Designing combination chemical genetics experiments.

Similar content being viewed by others

References

  1. Stelling, J. Sauer, U., Szallasi, Z., Doyle, F.J. III & Doyle, J. Robustness of cellular functions. Cell 118, 675–685 (2004).

    CAS  PubMed  Google Scholar 

  2. Koonin, E.V., Wolf, Y.I. & Karev, G.P. The structure of the protein universe and genome evolution. Nature 420, 218–223 (2002).

    CAS  PubMed  Google Scholar 

  3. Hood, L., Heath, J.R., Phelps, M.E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    CAS  PubMed  Google Scholar 

  4. Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    CAS  PubMed  Google Scholar 

  5. Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).

    CAS  PubMed  Google Scholar 

  6. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stockwell, B.R. Exploring biology with small organic molecules. Nature 432, 846–854 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boone, C., Bussey, H. & Andrews, B.J. Exploring genetic interactions and networks with yeast. Nat. Rev. Genet. 8, 437–449 (2007).

    CAS  PubMed  Google Scholar 

  9. Sharom, J.R., Bellows, D.S. & Tyers, M. From large networks to small molecules. Curr. Opin. Chem. Biol. 8, 81–90 (2004).

    CAS  PubMed  Google Scholar 

  10. Segrè, D., Deluna, A., Church, G.M. & Kishony, R. Modular epistasis in yeast metabolism. Nat. Genet. 37, 77–83 (2005).

    PubMed  Google Scholar 

  11. Wong, S.L. et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, L.V. et al. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J. Biol. 4, 6 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    CAS  PubMed  Google Scholar 

  14. Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5, 789–795 (2008).

    CAS  PubMed  Google Scholar 

  15. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    CAS  PubMed  Google Scholar 

  16. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    CAS  PubMed  Google Scholar 

  18. Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

    CAS  PubMed  Google Scholar 

  19. Lehár, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).

    PubMed  PubMed Central  Google Scholar 

  20. Kawasumi, M. & Nghiem, P. Chemical genetics: elucidating biological systems with small-molecule compounds. J. Invest. Dermatol. 127, 1577–1584 (2007).

    CAS  PubMed  Google Scholar 

  21. Oprea, T.I., Tropsha, A., Faulon, J.L. & Rintoul, M.D. Systems chemical biology. Nat. Chem. Biol. 3, 447–450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    CAS  PubMed  Google Scholar 

  23. Wishart, D.S. et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).

    CAS  PubMed  Google Scholar 

  24. Olah, M. et al. in Chemical Biology: from Small Molecules to Systems Biology and Drug Design Vol. 2 (eds. Schreiber, S.L., Kapoor, T. & Wess, G.) 760–779 (Wiley-VCH GmbH, Weinheim, Germany, 2007).

    Google Scholar 

  25. Feher, M. & Schmidt, J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    CAS  PubMed  Google Scholar 

  26. Yagoda, N. et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447, 864–868 (2007).

    PubMed  PubMed Central  Google Scholar 

  27. Yang, W.S. & Stockwell, B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 15, 234–245 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stegmaier, K. et al. Gene expression-based high-throughput screening(GE-HTS) and application to leukemia differentiation. Nat. Genet. 36, 257–263 (2004).

    CAS  PubMed  Google Scholar 

  29. Chen, S. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl. Acad. Sci. USA 103, 17266–17271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gangadhar, N.M., Firestein, S.J. & Stockwell, B.R. A novel role for jun N-terminal kinase signaling in olfactory sensory neuronal death. Mol. Cell. Neurosci. 38, 518–525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Koehler, A.N., Shamji, A.F. & Schreiber, S.L. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J. Am. Chem. Soc. 125, 8420–8421 (2003).

    CAS  PubMed  Google Scholar 

  32. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    CAS  PubMed  Google Scholar 

  33. Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 306, 1194–1198 (2004).

    CAS  PubMed  Google Scholar 

  34. Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  35. Avery, L. & Wasserman, S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 8, 312–316 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Anastassiou, D. Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol. 3, 83 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Mani, R., St Onge, R.P., Hartman, J.L. IV, Giaever, G. & Roth, F.P. Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Carter, G.W. et al. Prediction of phenotype and gene expression for combinations of mutations. Mol. Syst. Biol. 3, 96 (2007).

    PubMed  PubMed Central  Google Scholar 

  39. Greco, W.R., Bravo, G. & Parsons, J.C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

    CAS  PubMed  Google Scholar 

  40. Chou, T.C. & Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul. 22, 27–55 (1984).

    CAS  PubMed  Google Scholar 

  41. Jackson, R.C. Amphibolic drug combinations: the design of selective antimetabolite protocols based upon the kinetic properties of multienzyme systems. Cancer Res. 53, 3998–4003 (1993).

    CAS  PubMed  Google Scholar 

  42. Araujo, R.P., Petricoin, E.F. & Liotta, L.A. A mathematical model of combination therapy using the EGFR signaling network. Biosystems 80, 57–69 (2005).

    CAS  PubMed  Google Scholar 

  43. Costanzo, M., Giaever, G., Nislow, C. & Andrews, B. Experimental approaches to identify genetic networks. Curr. Opin. Biotechnol. 17, 472–480 (2006).

    CAS  PubMed  Google Scholar 

  44. Elena, S.F. & Lenski, R.E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    CAS  PubMed  Google Scholar 

  45. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by chemical-genetic profiling in yeast. Cell 126, 611–625 (2006).

    CAS  PubMed  Google Scholar 

  46. Dorer, R.K. et al. A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes. Curr. Biol. 15, 1070–1076 (2005).

    CAS  PubMed  Google Scholar 

  47. Ericson, E. et al. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast. PLoS Genet. 4, e1000151 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Jiang, B. et al. PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem. Biol. 15, 363–374 (2008).

    CAS  PubMed  Google Scholar 

  49. Eggert, U.S. et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2, e379 (2004).

    PubMed  PubMed Central  Google Scholar 

  50. MacKeigan, J.P., Murphy, L.O. & Blenis, J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat. Cell Biol. 7, 591–600 (2005).

    CAS  PubMed  Google Scholar 

  51. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–342 (2006).

    CAS  PubMed  Google Scholar 

  52. Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hoon, S. et al. An integrated platform of genomic assays reveals small-molecule bioactivities. Nat. Chem. Biol. 4, 498–506 (2008).

    CAS  PubMed  Google Scholar 

  54. Keith, C.T., Borisy, A.A. & Stockwell, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    CAS  PubMed  Google Scholar 

  55. Kaelin, W.G. Jr., The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    CAS  PubMed  Google Scholar 

  56. Zimmermann, G.R., Lehár, J. & Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).

    CAS  PubMed  Google Scholar 

  57. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kvien, T.K. et al. Efficacy and safety of a novel synergistic drug candidate - CRx-102 - in hand osteoarthritis. Ann. Rheum. Dis. 67, 942–948 (2008).

    CAS  PubMed  Google Scholar 

  59. Dresser, G.K., Spence, J.D. & Bailey, D.G. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin. Pharmacokinet. 38, 41–57 (2000).

    CAS  PubMed  Google Scholar 

  60. Li, Y. et al. Gene expression profiling revealed novel molecular targets of docetaxel and estramustine combination treatment in prostate cancer cells. Mol. Cancer Ther. 4, 389–398 (2005).

    CAS  PubMed  Google Scholar 

  61. Li, Y. et al. Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells. BMC Cancer 5, 7 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Daigeler, A. et al. Synergistic apoptotic effects of taurolidine and TRAIL on squamous carcinoma cells of the esophagus. Int. J. Oncol. 32, 1205–1220 (2008).

    CAS  PubMed  Google Scholar 

  63. Austin, C.P., Brady, L.S., Insel, T.R. & Collins, F.S. NIH Molecular Libraries Initiative. Science 306, 1138–1139 (2004).

    CAS  PubMed  Google Scholar 

  64. Seiler, K.P. et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res. 36, D351–D359 (2008).

    CAS  PubMed  Google Scholar 

  65. Tolliday, N. et al. Small molecules, big players: the National Cancer Institute's Initiative for Chemical Genetics. Cancer Res. 66, 8935–8942 (2006).

    CAS  PubMed  Google Scholar 

  66. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).

    CAS  PubMed  Google Scholar 

  67. Root, D.E., Flaherty, S.P., Kelley, B.P. & Stockwell, B.R. Biological mechanism profiling using an annotated compound library. Chem. Biol. 10, 881–892 (2003).

    CAS  PubMed  Google Scholar 

  68. Taunton, J., Hassig, C.A. & Schreiber, S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    CAS  PubMed  Google Scholar 

  69. Miller, L.W. & Cornish, V.W. Selective chemical labeling of proteins in living cells. Curr. Opin. Chem. Biol. 9, 56–61 (2005).

    CAS  PubMed  Google Scholar 

  70. Lefurgy, S. & Cornish, V. Finding Cinderella after the ball: a three-hybrid approach to drug target identification. Chem. Biol. 11, 151–153 (2004).

    CAS  PubMed  Google Scholar 

  71. MacBeath, G. & Schreiber, S.L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  PubMed  Google Scholar 

  72. Lopez, A., Parsons, A.B., Nislow, C., Giaever, G. & Boone, C. Chemical-genetic approaches for exploring the mode of action of natural products. Prog. Drug Res. 66, 237, 239–71 (2008).

    PubMed  Google Scholar 

  73. Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).

    CAS  PubMed  Google Scholar 

  74. Melnick, J.S. et al. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc. Natl. Acad. Sci. USA 103, 3153–3158 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. MacDonald, M.L. et al. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol. 2, 329–337 (2006).

    CAS  PubMed  Google Scholar 

  76. Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    CAS  PubMed  Google Scholar 

  77. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

  78. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).

    CAS  PubMed  Google Scholar 

  79. Brandner, C.J. et al. The ORFeome of Staphylococcus aureus v 1.1. BMC Genomics 9, 321 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Dricot, A. et al. Generation of the Brucella melitensis ORFeome version 1.1. Genome Res. 14, 2201–2206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Parrish, J.R. et al. High-throughput cloning of Campylobacter jejuni ORfs by in vivo recombination in Escherichia coli. J. Proteome Res. 3, 582–586 (2004).

    CAS  PubMed  Google Scholar 

  82. Murthy, T. et al. A full-genomic sequence-verified protein-coding gene collection for Francisella tularensis. PLoS ONE 2, e577 (2007).

    PubMed  PubMed Central  Google Scholar 

  83. Matsuyama, A. et al. ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 24, 841–847 (2006).

    CAS  PubMed  Google Scholar 

  84. Xu, D. et al. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 3, e92 (2007).

    PubMed  PubMed Central  Google Scholar 

  85. Hoyer, L.L. & Konopka, J. Candida here, and Candida there, and Candida everywhere! Future Microbiol. 3, 271–273 (2008).

    PubMed  Google Scholar 

  86. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    CAS  PubMed  Google Scholar 

  87. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41 (2003).

    PubMed  Google Scholar 

  88. Foley, E. & O'Farrell, P.H. Functional dissection of an innate immune response by a genome-wide RNAi screen. PLoS Biol. 2, E203 (2004).

    PubMed  PubMed Central  Google Scholar 

  89. Jones, G.M. et al. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods 5, 239–241 (2008).

    CAS  PubMed  Google Scholar 

  90. Brasch, M.A., Hartley, J.L. & Vidal, M. ORFeome cloning and systems biology: standardized mass production of the parts from the parts-list. Genome Res. 14, 2001–2009 (2004).

    CAS  PubMed  Google Scholar 

  91. Tischler, J., Lehner, B. & Fraser, A.G. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40, 390–391 (2008).

    CAS  PubMed  Google Scholar 

  92. Gardner, T.S., di Bernardo, D., Lorenz, D. & Collins, J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  93. Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Haggarty, S.J., Clemons, P.A. & Schreiber, S.L. Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. J. Am. Chem. Soc. 125, 10543–10545 (2003).

    CAS  PubMed  Google Scholar 

  95. St Onge, R.P. et al. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 39, 199–206 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Musso, G. et al. The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Res. 18, 1092–1099 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee, M.S. et al. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res. 67, 11359–11367 (2007).

    CAS  PubMed  Google Scholar 

  98. Lehár, J., Krueger, A., Zimmermann, G. & Borisy, A. High-order combination effects and biological robustness. Mol. Syst. Biol. 4, 215 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Deutscher, D., Meilijson, I., Kupiec, M. & Ruppin, E. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat. Genet. 38, 993–998 (2006).

    CAS  PubMed  Google Scholar 

  100. Southan, C., Varkonyi, P. & Muresan, S. Complementarity between public and commercial databases: new opportunities in medicinal chemistry informatics. Curr. Top. Med. Chem. 7, 1502–1508 (2007).

    CAS  PubMed  Google Scholar 

  101. Stobaugh, R.E. Chemical Abstracts Service Chemical Registry System. 11. Substance-related statistics: update and additions. J. Chem. Inf. Comput. Sci. 28, 180–187 (1988).

    CAS  PubMed  Google Scholar 

  102. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lamesch, P. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–315 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.R.S. is supported by a Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation and by the NIH (CA097061 and GM085081). C.N. and G.G. are supported by the Canadian Institutes of Health Research (CIHR MOP-81340 and CIHR MOP-84305, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Lehár.

Ethics declarations

Competing interests

J.L. is employed by and has a significant number of options in CombinatoRx, which is engaged in combination chemical genetics as described. B.R.S. is a founder of and holds significant shares in CombinatoRx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehár, J., Stockwell, B., Giaever, G. et al. Combination chemical genetics. Nat Chem Biol 4, 674–681 (2008). https://doi.org/10.1038/nchembio.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing