Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis

This article has been updated

Abstract

Glutathione is central to cellular redox chemistry. The majority of glutathione redox research has been based on the chemical analysis of whole-cell extracts, which unavoidably destroy subcellular compartment–specific information. Compartment-specific real-time measurements based on genetically encoded fluorescent probes now suggest that the cytosolic glutathione redox potential is about 100 mV more reducing than previously thought. Using these probes in yeast, we show that even during severe oxidative stress, the cytosolic glutathione disulfide (GSSG) concentration is much more tightly regulated than expected and provides a mechanistic explanation for the discrepancy with conventional measurements. GSSG that is not immediately reduced in the cytosol is rapidly transported into the vacuole by the ABC-C transporter Ycf1. The amount of whole-cell GSSG is entirely dependent on Ycf1 and uninformative about the cytosolic glutathione pool. Applying these insights, we identify Trx2 and Grx2 as efficient backup systems to glutathione reductase for cytosolic GSSG reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytosolic glutathione homeostasis is robustly maintained and involves GSSG compartmentalization.
Figure 2: Cytosolic GSSG is rapidly transported to another subcellular compartment.
Figure 3: Whole-cell GSSG changes are completely dependent on Ycf1-mediated vacuolar accumulation.
Figure 4: Ycf1 mediates rapid compartmentalization of GSSG to the vacuole.
Figure 5: Trx2, but not Trx1, contributes to cytosolic GSSG reduction.
Figure 6: Grx2 has an important backup role in cytosolic GSSG reduction.

Similar content being viewed by others

Change history

  • 21 December 2012

    In the version of this article initially published online, equation (5) in the Methods section was written incorrectly. This error has been corrected in the PDF and HTML versions of this article.

References

  1. Kumar, C. et al. Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 30, 2044–2056 (2011).

    Article  CAS  Google Scholar 

  2. Grant, C.M., MacIver, F.H. & Dawes, I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 29, 511–515 (1996).

    Article  CAS  Google Scholar 

  3. Dalle-Donne, I., Rossi, R., Colombo, G., Giustarini, D. & Milzani, A. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem. Sci. 34, 85–96 (2009).

    Article  CAS  Google Scholar 

  4. Mieyal, J.J., Gallogly, M.M., Qanungo, S., Sabens, E.A. & Shelton, M.D. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid. Redox Signal. 10, 1941–1988 (2008).

    Article  CAS  Google Scholar 

  5. Muller, E.G. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol. Biol. Cell 7, 1805–1813 (1996).

    Article  CAS  Google Scholar 

  6. Østergaard, H., Tachibana, C. & Winther, J.R. Monitoring disulfide bond formation in the eukaryotic cytosol. J. Cell Biol. 166, 337–345 (2004).

    Article  Google Scholar 

  7. Dooley, C.T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004).

    Article  CAS  Google Scholar 

  8. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).

    Article  CAS  Google Scholar 

  9. Morgan, B., Sobotta, M.C. & Dick, T.P. Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Radic. Biol. Med. 51, 1943–1951 (2011).

    Article  CAS  Google Scholar 

  10. Braun, N.A., Morgan, B., Dick, T.P. & Schwappach, B. The yeast CLC protein counteracts vesicular acidification during iron starvation. J. Cell Sci. 123, 2342–2350 (2010).

    Article  CAS  Google Scholar 

  11. Meyer, A.J. & Dick, T.P. Fluorescent protein–based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010).

    Article  CAS  Google Scholar 

  12. Albrecht, S.C., Barata, A.G., Grosshans, J., Teleman, A.A. & Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 14, 819–829 (2011).

    Article  CAS  Google Scholar 

  13. Dardalhon, M. et al. Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes. Free Radic. Biol. Med. 52, 2254–2265 (2012).

    Article  CAS  Google Scholar 

  14. Rebrin, I., Bayne, A.C., Mockett, R.J., Orr, W.C. & Sohal, R.S. Free aminothiols, glutathione redox state and protein mixed disulphides in aging Drosophila melanogaster. Biochem. J. 382, 131–136 (2004).

    Article  CAS  Google Scholar 

  15. Jones, D.P. & Liang, Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic. Biol. Med. 47, 1329–1338 (2009).

    Article  CAS  Google Scholar 

  16. Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).

    Article  CAS  Google Scholar 

  17. Schafer, F.Q. & Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001).

    Article  CAS  Google Scholar 

  18. Aw, T.Y. Cellular redox: a modulator of intestinal epithelial cell proliferation. News Physiol. Sci. 18, 201–204 (2003).

    CAS  PubMed  Google Scholar 

  19. López-Mirabal, H.R., Thorsen, M., Kielland-Brandt, M.C., Toledano, M.B. & Winther, J.R. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4′-dipyridyl disulfide. FEMS Yeast Res. 7, 391–403 (2007).

    Article  Google Scholar 

  20. López-Mirabal, H.R. & Winther, J.R. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783, 629–640 (2008).

    Article  Google Scholar 

  21. Hirrlinger, J. et al. The multidrug resistance protein MRP1 mediates the release of glutathione disulfide from rat astrocytes during oxidative stress. J. Neurochem. 76, 627–636 (2001).

    Article  CAS  Google Scholar 

  22. Brechbuhl, H.M. et al. Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J. Biol. Chem. 285, 16582–16587 (2010).

    Article  CAS  Google Scholar 

  23. Lohman, J.R. & Remington, S.J. Development of a family of redox-sensitive green fluorescent protein indicators for use in relatively oxidizing subcellular environments. Biochemistry 47, 8678–8688 (2008).

    Article  CAS  Google Scholar 

  24. Paumi, C.M., Chuk, M., Snider, J., Stagljar, I. & Michaelis, S. ABC transporters in Saccharomyces cerevisiae and their interactors: new technology advances the biology of the ABCC (MRP) subfamily. Microbiol. Mol. Biol. Rev. 73, 577–593 (2009).

    Article  CAS  Google Scholar 

  25. Paumi, C.M., Pickin, K.A., Jarrar, R., Herren, C.K. & Cowley, S.T. Ycf1p attenuates basal level oxidative stress response in Saccharomyces cerevisiae. FEBS Lett. 586, 847–853 (2012).

    Article  CAS  Google Scholar 

  26. Lee, M.E. et al. The Rho1 GTPase acts together with a vacuolar glutathione S-conjugate transporter to protect yeast cells from oxidative stress. Genetics 188, 859–870 (2011).

    Article  CAS  Google Scholar 

  27. Lazard, M. et al. Selenodiglutathione uptake by the Saccharomyces cerevisiae vacuolar ATP-binding cassette transporter Ycf1p. FEBS J. 278, 4112–4121 (2011).

    Article  CAS  Google Scholar 

  28. Tan, S.X. et al. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 285, 6118–6126 (2010).

    Article  CAS  Google Scholar 

  29. Marty, L. et al. The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 9109–9114 (2009).

    Article  CAS  Google Scholar 

  30. Kanzok, S.M. et al. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291, 643–646 (2001).

    Article  CAS  Google Scholar 

  31. Bonilla, M., Denicola, A., Marino, S.M., Gladyshev, V.N. & Salinas, G. Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation. J. Biol. Chem. 286, 4959–4967 (2011).

    Article  CAS  Google Scholar 

  32. Porras, P. et al. Glutaredoxins catalyze the reduction of glutathione by dihydrolipoamide with high efficiency. Biochem. Biophys. Res. Commun. 295, 1046–1051 (2002).

    Article  CAS  Google Scholar 

  33. Johansson, C., Lillig, C.H. & Holmgren, A. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J. Biol. Chem. 279, 7537–7543 (2004).

    Article  CAS  Google Scholar 

  34. Minich, T. et al. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J. Neurochem. 97, 373–384 (2006).

    Article  CAS  Google Scholar 

  35. Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 62, 649–671 (2000).

    Article  CAS  Google Scholar 

  36. Knollema, S., Hom, H.W., Schirmer, H., Korf, J. & Ter Horst, G.J. Immunolocalization of glutathione reductase in the murine brain. J. Comp. Neurol. 373, 157–172 (1996).

    Article  CAS  Google Scholar 

  37. Bao, R., Zhang, Y., Lou, X., Zhou, C.Z. & Chen, Y. Structural and kinetic analysis of Saccharomyces cerevisiae thioredoxin Trx1: implications for the catalytic mechanism of GSSG reduced by the thioredoxin system. Biochim. Biophys. Acta 1794, 1218–1223 (2009).

    Article  CAS  Google Scholar 

  38. Bulger, J.E. & Brandt, K.G. Yeast glutathione reductase. I. Spectrophotometric and kinetic studies of its interaction with reduced nicotinamide adenine dinucleotide. J. Biol. Chem. 246, 5570–5577 (1971).

    CAS  PubMed  Google Scholar 

  39. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    Article  CAS  Google Scholar 

  40. Rahman, I., Kode, A. & Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat. Protoc. 1, 3159–3165 (2006).

    Article  CAS  Google Scholar 

  41. Meyer, A.J. et al. Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J. 52, 973–986 (2007).

    Article  CAS  Google Scholar 

  42. Mumberg, D., Muller, R. & Funk, M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.M. was funded by a European Molecular Biology Organization short-term fellowship (313-2009) and a DKFZ visiting scientist fellowship. Support by the Chica and Heinz Schaller Foundation is gratefully acknowledged. We thank B. Schwappach for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.M., D.E. and T.N.E.A. performed all experiments. J.R. and M.S. provided materials and technical expertise, and contributed to experimental design. T.P.D. and B.M. conceived the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Tobias P Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, B., Ezeriņa, D., Amoako, T. et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol 9, 119–125 (2013). https://doi.org/10.1038/nchembio.1142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing