Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A biocompatible condensation reaction for controlled assembly of nanostructures in living cells

An Erratum to this article was published on 01 March 2010

This article has been updated

Abstract

Through controlled synthesis and molecular assembly, biological systems are able to organize molecules into supramolecular structures that carry out sophisticated processes. Although chemists have reported a few examples of supramolecular assembly in water, the controlled covalent synthesis of large molecules and structures in vivo has remained challenging. Here we report a condensation reaction between 1,2-aminothiol and 2-cyanobenzothiazole that occurs in vitro and in living cells under the control of either pH, disulfide reduction or enzymatic cleavage. In vitro, the size and shape of the condensation products, and the nanostructures subsequently assembled, were different in each case and could thus be controlled by tuning the structure of the monomers. Direct imaging of the products obtained in the cells revealed their locations—near the Golgi bodies under enzymatic cleavage control—demonstrating the feasibility of a controlled and localized reaction in living cells. This intracellular condensation process enabled the imaging of the proteolytic activity of furin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schemes of controlled condensation reaction between 2-cyanobenzothiazole (CBT) and 1,2-aminothiol.
Figure 2: pH-controlled condensation of monomer 2.
Figure 4: SEM and TEM characterizations of products from controlled condensation of monomers 3, 4 and 5.
Figure 3: Enzyme-controlled condensation of monomers 5 and 6.
Figure 5: Visualization of controlled condensation in cells.
Figure 6: Imaging of furin-triggered localized condensation in live cells.

Similar content being viewed by others

Change history

  • 18 January 2010

    In the version of this Article originally published, in Fig. 1b the groups labelled R1 and R2 were switched. This has now been corrected in the HTML and PDF versions of the Article.

References

  1. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for synthesis of nanostructure. Science 254, 1312–1319 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Lehn, J. M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information-processing and self-organization. Angew. Chem. Int. Ed. 29, 1304–1319 (1990).

    Article  Google Scholar 

  3. Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1217 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D. & Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281, 389–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, Z., Liang, G. & Xu, B. Enzymatic hydrolation of small molecules. Acc. Chem. Res. 41, 315–326 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Saxon, E. & Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kolb, H. C., Finn, M.G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  10. Link, A. J. & Tirrell, D. A. Cell surface labeling of Escherichia coli via copper (I)-catalyzed [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 11164–11165 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Agard, N. J., Prescher, J. A. & Bertozzi, C. R. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046–15047 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Hsu, T.-L. et al. Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells. Proc. Natl Acad. Sci. USA 104, 2614–2619 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Zeng, Y., Ramya, T. N. C., Dirksen, A., Dawson, P. E. & Paulson, J. C. High-efficiency labeling of sialylated glycoproteins on living cells. Nature Methods 6, 207–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. White, E. H., McCapra, F., Field, G. F. & McElroy, W. D. The structure and synthesis of firefly luciferin. J. Am. Chem. Soc. 83, 2402–2403 (1961).

    Article  CAS  Google Scholar 

  16. Ren, H. et al. A biocompatible condensation reaction for the labeling of terminal cysteine residues on proteins. Angew. Chem. Int. Ed. doi:10.1002/anie.200903627 (2009).

  17. Okada, K., Iio, H., Kubota, I. & Goto, T. Firefly bioluminescence III. Conversion of oxyluciferin to luciferin in firefly. Tetrahedron Lett. 32, 2771–2774 (1974).

    Article  Google Scholar 

  18. Gomi, K. & Kajiyama, N. Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin. J. Biol. Chem. 276, 36508–36513 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, G. Furin at the cutting edge: From protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jagasia, R., Holub, J. M., Bollinger, M., Kirshenbaum, K. & Finn, M. G. Peptide cyclization and cylcodimerization by Cu+-mediated azide-alkyne cycloaddition. J. Org. Chem. 74, 2964–2974 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Punna, S., Kuzelka, J., Wang, Q. & Finn, M. G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed. 44, 2215–2220 (2005).

    Article  CAS  Google Scholar 

  22. Hosaka, M. et al. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin. J. Biol. Chem. 266, 12127–12130 (1991).

    CAS  PubMed  Google Scholar 

  23. Talanian, R. V. et al. Substrate specificities of caspase family proteases. J. Biol. Chem. 272, 9677–9682 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, Z. M., Xu, K. M., Guo, Z. F., Guo, Z. H. & Xu, B. Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death. Adv. Mater. 17, 3152–3156 (2007).

    Article  Google Scholar 

  25. Shapiro, J. et al. Localization of endogenous furin in cultured cell lines. J. Histochem. Cytochem. 45, 3–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Henrich, S. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nature Struct. Biol. 10, 520–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bassi, D. E., Fu, J., de Cicco, R. L. & Klein-Szanto, A. J. P. Proprotein convertases: ‘Master switches’ in the regulation of tumor growth and progression. Mol. Carcinogen. 44, 151–161 (2005).

    Article  CAS  Google Scholar 

  28. Cheng, M. et al. Pro-protein convertase gene expression in human breast cancer. Int. J. Cancer 71, 966–971(1997).

    Article  CAS  PubMed  Google Scholar 

  29. Tandon, A. K., Clark, G. M., Chamness, G. C., Chirgwin, J. M. & McGuire, W. L. Cathepsin-D and prognosis in breast cancer. New Eng. J. Med. 322, 297–302 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Yan, S. Q., Sameni, M. & Solane, B. F. Cathepsin B and human tumor progression. Biol. Chem. 379, 113–123 (1998).

    CAS  PubMed  Google Scholar 

  31. Dragulescu-Andrasi, A., Liang, G. & Rao, J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjugate Chem. 20, 1660–1666 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Chin at Stanford Nanocharacterization Laboratory for the technical assistance with TEM experiments, S. R. Lynch at the NMR Facility of Stanford Chemistry Department for help with the HMBC two-dimensional NMR experiment, J. Perrino at the Cell Sciences Imaging Facility of Stanford University for electron microscope imaging, and A. Dragulescu-Andrasi for help with the furin immunofluorescence staining. This work has been supported by a grant from NIGMS (R01GM086196-01) and an IDEA award from Department of Defense Breast Cancer Research Program (W81XWH-09-1-0057).

Author information

Authors and Affiliations

Authors

Contributions

G.L. and J.R. conceived and designed the experiments, G.L. and H.R. performed the experiments, G.L. and J.R. analysed the data, and G.L. and J.R. co-wrote the paper.

Corresponding author

Correspondence to Jianghong Rao.

Ethics declarations

Competing interests

Stanford University is filing patent protection on some of the results in this manuscript.

Supplementary information

Supplementary information

Supplementary information (PDF 1871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nature Chem 2, 54–60 (2010). https://doi.org/10.1038/nchem.480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing