Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Designing artificial enzymes by intuition and computation

Abstract

The rational design of artificial enzymes, either by applying physico–chemical intuition of protein structure and function or with the aid of computational methods, is a promising area of research with the potential to tremendously impact medicine, industrial chemistry and energy production. Designed proteins also provide a powerful platform for dissecting enzyme mechanisms of natural systems. Artificial enzymes have come a long way from simple α-helical peptide catalysts to proteins that facilitate multistep chemical reactions designed by state-of-the-art computational methods. Looking forward, we examine strategies employed by natural enzymes that could be used to improve the speed and selectivity of artificial catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From sequence to structure to function.
Figure 2: Helical designs with tertiary structure.
Figure 3: Stepwise oxygen binding to a binary-patterned four-helix bundle.
Figure 4: Retrostructural analysis and design of a dinuclear metalloprotein.
Figure 5: Design versus structure of a Zn2+ binding MBP.
Figure 6: Assembly line for the ROSETTA Enzymes.
Figure 7: Millisecond timescale motions in adenylate cyclase.

Similar content being viewed by others

References

  1. Davie, E. A. C., Mennen, S. M., Xu, Y. & Miller, S. J. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev. 107, 5759–5812 (2007).

    PubMed  Google Scholar 

  2. List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 58, 5573–5590 (2002).

    CAS  Google Scholar 

  3. Koder, R. L. & Dutton, P. L. Intelligent design: the de novo engineering of proteins with specified functions. Dalton Trans. 25, 3045–3051 (2006).

    Google Scholar 

  4. Lim, V. in Protein Folding, 28th Conference of the German Biochemical Society (ed. Jaenicke, R.) 149–166 (Elsevier, 1979).

    Google Scholar 

  5. Crick, F. H. C. The packing of alpha-helices: simple coiled coils. Acta Crystallogr. 6, 689–697 (1953).

    CAS  Google Scholar 

  6. Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M. & Hecht, M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science 262, 1680–1685 (1993).

    CAS  PubMed  Google Scholar 

  7. Lau, S. Y. M., Taneja, A. K. & Hodges, R. S. Synthesis of a model protein of defined secondary and quaternary structure. J. Biol. Chem. 259, 13253–13261 (1984).

    CAS  PubMed  Google Scholar 

  8. DeGrado, W. F. & Lear, J. D. Induction of peptide conformation at apolar/water interfaces. 1. a study with model peptides of defined hydrophobic periodicity. J. Am. Chem. Soc. 107, 7684–7689 (1985).

    CAS  Google Scholar 

  9. Bryson, J. W. et al. Protein design: a hierarchic approach. Science 270, 935–941 (1995).

    CAS  PubMed  Google Scholar 

  10. Handel, T. M., Williams, S. A. & DeGrado, W. F. Metal ion-dependent modulation of the dynamics of a designed protein. Science 261, 879–885 (1993).

    CAS  PubMed  Google Scholar 

  11. Lovejoy, B. et al. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science 259, 1288–1293 (1993).

    CAS  PubMed  Google Scholar 

  12. Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T. & Kim, P. S. High-resolution protein design with backbone freedom. Science 282, 1462–1467 (1998).

    CAS  PubMed  Google Scholar 

  13. Sasaki, T. & Kaiser, E. T. Helichrome: synthesis and enzymatic activity of a designed hemeprotein. J. Am. Chem. Soc. 111, 380–381 (1989).

    CAS  Google Scholar 

  14. Barbier, B. & Brack, A. Basic polypeptides accelerate the hydrolysis of ribonucleic acids. J. Am. Chem. Soc. 110, 6880–6882 (1988).

    CAS  Google Scholar 

  15. Barbier, B. & Brack, A. Conformation-controlled hydrolysis of polyribonucleotides by sequential basic polypeptides. J. Am. Chem. Soc. 114, 3511–3515 (1992).

    CAS  Google Scholar 

  16. Brack, A. & Spach, G. Multiconformational synthetic polypeptides. J. Am. Chem. Soc. 103, 6319–6323 (1981).

    CAS  Google Scholar 

  17. Johnsson, K., Allemann, R. K., Widmer, H. & Benner, S. A. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 365, 530–532 (1993).

    CAS  PubMed  Google Scholar 

  18. Taylor, S. E., Rutherford, T. J. & Allemann, R. K. Design, synthesis and characterisation of a peptide with oxaloacetate decarboxylase activity. Bioorg. Med. Chem. Lett. 11, 2631–2635 (2001).

    CAS  PubMed  Google Scholar 

  19. Taylor, S. E., Rutherford, T. J. & Allemann, R. K. Design of a folded, conformationally stable oxaloacetate decarboxylase. J. Chem. Soc. Perkins Trans. 2, 751–755 (2002).

    Google Scholar 

  20. Nicoll, A. J. & Allemann, R. K. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase. Org. Biomol. Chem. 2, 2175–2180 (2004).

    CAS  PubMed  Google Scholar 

  21. Lee, D. H., Severin, K., Yokobayashi, Y. & Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594 (1997).

    CAS  PubMed  Google Scholar 

  22. Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M. R. A chiroselective peptide replicator. Nature 409, 797–801 (2001).

    CAS  PubMed  Google Scholar 

  23. Butterfield, S. M., Cooper, W. J. & Waters, M. L. Minimalist protein design: a beta-hairpin peptide that binds ssDNA. J. Am. Chem. Soc. 127, 24–25 (2005).

    CAS  PubMed  Google Scholar 

  24. Butterfield, S. M., Goodman, C. M., Rotello, V. M. & Waters, M. L. A peptide flavoprotein mimic: flavin recognition and redox potential modulation in water by a designed beta hairpin. Angew. Chem. Int. Ed. 43, 724–727 (2004).

    CAS  Google Scholar 

  25. Hughes, R. M. & Waters, M. L. Model systems for beta-hairpins and beta-sheets. Curr. Opin. Struct. Biol. 16, 514–524 (2006).

    CAS  PubMed  Google Scholar 

  26. Olofsson, S. & Baltzer, L. Structure and dynamics of a designed helix-loop-helix dimer in dilute aqueous trifluoroethanol solution. A strategy for NMR spectroscopic structure determination of molten globules in the rational design of native-like proteins. Fold. Des. 1, 347–356 (1996).

    CAS  PubMed  Google Scholar 

  27. Rossi, P., Tecilla, P., Baltzer, L. & Scrimin, P. De novo metallonucleases based on helix-loop-helix motifs. Chem. Eur. J. 10, 4163–4170 (2004).

    CAS  PubMed  Google Scholar 

  28. Razkin, J., Lindgren, J., Nilsson, H. & Baltzer, L. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs. ChemBioChem 9, 1975–1984 (2008).

    CAS  PubMed  Google Scholar 

  29. Razkin, J., Nilsson, H. & Baltzer, L. Catalysis of the cleavage of uridine 3′-2,2, 2-trichloroethylphosphate by a designed helix-loop-helix motif peptide. J. Am. Chem. Soc. 129, 14752–14758 (2007).

    CAS  PubMed  Google Scholar 

  30. Tommos, C., Skalicky, J. J., Pilloud, D. L., Wand, A. J. & Dutton, P. L. De novo proteins as models of radical enzymes. Biochemistry 38, 9495–9507 (1999).

    CAS  PubMed  Google Scholar 

  31. Dai, Q. H. et al. Structure of a de novo designed protein model of radical enzymes. J. Am. Chem. Soc. 124, 10952–19053 (2002).

    CAS  PubMed  Google Scholar 

  32. Gibney, B. R., Rabanal, F., Skalicky, J. J., Wand, A. J. & Dutton, P. L. Design of a unique protein scaffold for maquettes. J. Am. Chem. Soc. 119, 2323–2324 (1997).

    CAS  Google Scholar 

  33. Gibney, B. R., Rabanal, F., Skalicky, J. J., Wand, A. J. & Dutton, P. L. Iterative protein redesign. J. Am. Chem. Soc. 121, 4952–4960 (1999).

    CAS  Google Scholar 

  34. Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997).

    CAS  PubMed  Google Scholar 

  35. Koder, R. L. et al. Native-like structure in designed four helix bundles driven by buried polar interactions. J. Am. Chem. Soc. 128, 14450–14451 (2006).

    CAS  PubMed  Google Scholar 

  36. Koder, R. L. et al. Design and engineering of an O2 transport protein. Nature 458, 305–309 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kundu, S., Trent, J. T. & Hargrove, M. S. Plants, humans and hemoglobins. Trends Plant Sci. 8, 387–393 (2003).

    CAS  PubMed  Google Scholar 

  38. Dahiyat, B. I. & Mayo, S. L. De novo protein design: fully automated sequence selection. Science 278, 82–87 (1997).

    CAS  PubMed  Google Scholar 

  39. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    CAS  PubMed  Google Scholar 

  40. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2658 (1996).

    CAS  PubMed  Google Scholar 

  41. Lombardi, A. et al. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc. Natl Acad. Sci. USA 97, 6298–305 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Summa, C. M., Lombardi, A., Lewis, M. & DeGrado, W. F. Tertiary templates for the design of diiron proteins. Curr. Opin. Struct. Biol. 9, 500–508 (1999).

    CAS  PubMed  Google Scholar 

  43. Lazar, G. A., Desjarlais, J. R. & Handel, T. M. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 6, 1167–1178 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Di Costanzo, L. et al. Toward the de novo design of a catalytically active helix bundle: a substrate-accessible carboxylate-bridged dinuclear metal center. J. Am. Chem. Soc. 123, 12749–57 (2001).

    CAS  PubMed  Google Scholar 

  45. Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maglio, O., Nastri, F., Pavone, V., Lombardi, A. & DeGrado, W. F. Preorganization of molecular binding sites in designed diiron proteins. Proc. Natl Acad. Sci. USA 100, 3772–3777 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Geremia, S. et al. Response of a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume determined by X-ray crystallography. J. Am. Chem. Soc. 127, 17266–76 (2005).

    CAS  PubMed  Google Scholar 

  48. DeGrado, W. F. et al. Sliding helix and change of coordination geometry in a model di-MnII protein. Angew. Chem. Int. Ed. 42, 417–420 (2003).

    CAS  Google Scholar 

  49. Summa, C. M., Rosenblatt, M. M., Hong, J. K., Lear, J. D. & DeGrado, W. F. Computational de novo design, and characterization of an A2B2 diiron protein. J. Mol. Biol. 321, 923–938 (2002).

    CAS  PubMed  Google Scholar 

  50. Marsh, E. N. & DeGrado, W. F. Noncovalent self-assembly of a heterotetrameric diiron protein. Proc. Natl Acad. Sci. USA 99, 5150–5154 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Papoian, G. A., DeGrado, W. F. & Klein, M. L. Probing the configurational space of a metalloprotein core: an ab initio molecular dynamics study of Duo Ferro 1 binuclear Zn cofactor. J. Am. Chem. Soc. 125, 560–569 (2003).

    CAS  PubMed  Google Scholar 

  52. Cochran, F. V. et al. Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J. Am. Chem. Soc. 127, 1346–1347 (2005).

    CAS  PubMed  Google Scholar 

  53. Nanda, V. et al. De novo design of a redox-active minimal rubredoxin mimic. J. Am. Chem. Soc. 127, 5804–5805 (2005).

    CAS  PubMed  Google Scholar 

  54. Clarke, N. D. & Yuan, S. M. Metal search: a computer program that helps design tetrahedral metal-binding sites. Proteins 23, 256–263 (1995).

    CAS  PubMed  Google Scholar 

  55. Klemba, M., Gardner, K. H., Marino, S., Clarke, N. D. & Regan, L. Novel metal-binding proteins by design. Nature Struct. Biol. 2, 368–373 (1995).

    CAS  PubMed  Google Scholar 

  56. Regan, L. & Clarke, N. D. A tetrahedral zinc(II)-binding site introduced into a designed protein. Biochemistry 29, 10878–10883 (1990).

    CAS  PubMed  Google Scholar 

  57. Hellinga, H. W. & Richards, F. M. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J. Mol. Biol. 222, 763–785 (1991).

    CAS  PubMed  Google Scholar 

  58. Marvin, J. S. & Hellinga, H. W. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc. Natl Acad. Sci. USA 98, 4955–4960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Telmer, P. G. & Shilton, B. H. Structural studies of an engineered zinc biosensor reveal an unanticipated mode of zinc binding. J. Mol. Biol. 354, 829–840 (2005).

    CAS  PubMed  Google Scholar 

  60. Benson, D. E., Wisz, M. S. & Hellinga, H. W. Rational design of nascent metalloenzymes. Proc. Natl Acad. Sci. USA 97, 6292–6297 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pinto, A. L., Hellinga, H. W. & Caradonna, J. P. Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc. Natl Acad. Sci. USA 94, 5562–5567 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bolon, D. N. & Mayo, S. L. Enzyme-like proteins by computational design. Proc. Natl Acad. Sci. USA 98, 14274–14279 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Desmet, J., Demaeyer, M., Hazes, B. & Lasters, I. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992).

    CAS  PubMed  Google Scholar 

  64. Looger, L. L. & Hellinga, H. W. Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics. J. Mol. Biol. 307, 429–445 (2001).

    CAS  PubMed  Google Scholar 

  65. Host, G. E., Razkin, J., Baltzer, L. & Jonsson, B. H. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate. ChemBioChem 8, 1570–1576 (2007).

    PubMed  Google Scholar 

  66. Kuhlman, B. & Baker, D. Native protein sequences are close to optimal for their structures. Proc. Natl Acad. Sci. USA 97, 10383–10388 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    PubMed  Google Scholar 

  69. Tanaka, F., Fuller, R., Shim, H., Lerner, R. A. & Barbas, C. F. Evolution of aldolase antibodies in vitro: correlation of catalytic activity and reaction-based selection. J. Mol. Biol. 335, 1007–1018 (2004).

    CAS  PubMed  Google Scholar 

  70. Tantillo, D. J., Chen, J. & Houk, K. N. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Bio. 2, 743–750 (1998).

    CAS  Google Scholar 

  71. Zanghellini, A. et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15, 2785–2794 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ladman, Y., Schwartz, J. T. & Wolfson, H. J. Affine invariant model-based object recognition. IEEE Trans. Robot. Automat. 6, 578–589 (1990).

    Google Scholar 

  73. Wolfson, H. J. & Rigoutsos, I. Geometric hashing: an overview. IEEE Comp. Sci. Eng. 4, 10–21 (1997).

    Google Scholar 

  74. Li, H., Helling, R., Tang, C. & Wingreen, N. Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669 (1996).

    CAS  PubMed  Google Scholar 

  75. Li, H., Tang, C. & Wingreen, N. S. Are protein folds atypical? Proc. Natl Acad. Sci. USA 95, 4987–4990 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hilvert, D. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69, 751–792 (2000).

    CAS  PubMed  Google Scholar 

  77. Thorn, S. N., Daniels, R. G., Auditor, M. T. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995).

    CAS  PubMed  Google Scholar 

  78. Hollfelder, F., Kirby, A. J. & Tawfik, D. S. Off-the-shelf proteins that rival tailor-made antibodies as catalysts. Nature 383, 60–62 (1996).

    CAS  PubMed  Google Scholar 

  79. Warshel, A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J. Biol. Chem. 273, 27035–27038 (1998).

    CAS  PubMed  Google Scholar 

  80. Voigt, C. A., Mayo, S. L., Arnold, F. H. & Wang, Z. G. Computational method to reduce the search space for directed protein evolution. Proc. Natl Acad. Sci. USA 98, 3778–3783 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nature Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  82. Treynor, T. P., Vizcarra, C. L., Nedelcu, D. & Mayo, S. L. Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. Proc. Natl Acad. Sci. USA 104, 48–53 (2007).

    CAS  PubMed  Google Scholar 

  83. Lippow, S. M., Wittrup, K. D. & Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nature Biotechnol. 25, 1171–1176 (2007).

    CAS  Google Scholar 

  84. Radzicka, A. & Wolfenden, R. A proficient enzyme. Science 267, 90–93 (1995).

    CAS  PubMed  Google Scholar 

  85. Lienhard, G. E. Enzymatic catalysis and transition-state theory. Science 180, 149–154 (1973).

    CAS  PubMed  Google Scholar 

  86. Kraut, D. A., Carroll, K. S. & Herschlag, D. Challenges in enzyme mechanism and energetics. Annu. Rev. Biochem. 72, 517–571 (2003).

    CAS  PubMed  Google Scholar 

  87. Jencks, W. P. Catalysis in Chemistry and Enzymology (McGraw-Hill, 1969).

    Google Scholar 

  88. Noy, D., Moser, C. C. & Dutton, P. L. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales. Biochim. Biophys. Acta 1757, 90–105 (2006).

    CAS  PubMed  Google Scholar 

  89. Nagel, Z. D. & Klinman, J. P. Tunneling and dynamics in enzymatic hydride transfer. Chem. Rev. 106, 3095–3118 (2006).

    CAS  PubMed  Google Scholar 

  90. Bruice, T. C. Computational approaches: Reaction trajectories, structures, and atomic motions. Enzyme reactions and proficiency. Chem. Rev. 106, 3119–3139 (2006).

    CAS  PubMed  Google Scholar 

  91. Boehr, D. D., McElheny, D., Dyson, H. J. & Wright, P. E. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    CAS  PubMed  Google Scholar 

  92. Gerstein, M., Lesk, A. M. & Chothia, C. Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739–6749 (1994).

    CAS  PubMed  Google Scholar 

  93. Henzler-Wildman, K. A. et al. A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450, 913–916 (2007).

    CAS  PubMed  Google Scholar 

  94. Henzler-Wildman, K. A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    CAS  PubMed  Google Scholar 

  95. Xiang, J. Y., Jung, J. Y. & Sampson, N. S. Entropy effects on protein hinges: The reaction catalyzed by triosephosphate isomerase. Biochemistry 43, 11436–11445 (2004).

    CAS  PubMed  Google Scholar 

  96. Munro, A. W. et al. P450BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. 27, 250–257 (2002).

    CAS  PubMed  Google Scholar 

  97. Wyman, J. & Gill, S. J. Binding and Linkage (University Science Books, 1990).

    Google Scholar 

  98. Anderson, J. L. R., Koder, R. L., Moser, C. C. & Dutton, P. L. Controlling complexity and water penetration in functional de novo protein design. Biochem. Soc. Trans. 36, 1106–1111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002).

    CAS  PubMed  Google Scholar 

  100. Doudna, J. A. & Lorsch, J. R. Ribozyme catalysis: not different, just worse. Nature Struct. Mol. Biol. 12, 395–402 (2005).

    CAS  Google Scholar 

  101. Lee, S. & Jung, S. Cyclosophoraose as a catalytic carbohydrate for methanolysis. Carbohydr. Res. 339, 461–468 (2004).

    CAS  PubMed  Google Scholar 

  102. Hill, D. J., Mio, M. J., Prince, R. B., Hughes, T. S. & Moore, J. S. A field guide to foldamers. Chem. Rev. 101, 3893–4011 (2001).

    CAS  PubMed  Google Scholar 

  103. Goodman, C. M., Choi, S., Shandler, S. & DeGrado, W. F. Foldamers as versatile frameworks for the design and evolution of function. Nature Chem. Biol. 3, 252–262 (2007).

    CAS  Google Scholar 

  104. Nanda, V. & DeGrado, W. F. Computational design of heterochiral peptides against a helical target. J. Am. Chem. Soc. 128, 809–816 (2006).

    CAS  PubMed  Google Scholar 

  105. Nanda, V. & Degrado, W. F. Simulated evolution of emergent chiral structures in polyalanine. J. Am. Chem. Soc. 126, 14459–14467 (2004).

    CAS  PubMed  Google Scholar 

  106. Baldauf, C., Gunther, R. & Hoffmann, H.-J. Helix Formation in α, - and β, γ-hybrid peptides: Theoretical insights into mimicry of α- and β-peptides. J. Org. Chem. 71, 1200–1208 (2006).

    CAS  PubMed  Google Scholar 

  107. Sandvoss, L. M. & Carlson, H. A. Conformational behavior of β-proline oligomers. J. Am. Chem. Soc. 125, 15855–15862 (2003).

    CAS  PubMed  Google Scholar 

  108. Lee, O.-S. & Saven, J. G. Simulation studies of a helical m-phenylene ethylene foldamer. J. Phys. Chem. B 108, 11988–11994 (2004).

    CAS  Google Scholar 

  109. Smaldone, R. A. & Moore, J. S. Reactive sieving with foldamers: inspiration from nature and directions for the future. Chem. Eur. J. 14, 2650–2657 (2008).

    CAS  PubMed  Google Scholar 

  110. Blake, C. C. et al. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Å resolution. Nature 206, 757–761 (1965).

    CAS  PubMed  Google Scholar 

  111. Nanda, V. Do-it-yourself enzymes. Nature Chem. Biol. 4, 273–275 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

VN acknowledges support from the NIH Director's New Innovator Award Program, 1-DP2-OD006478-01 and the NSF BMAT program DMR-0907273. RLK acknowledges supported by the following grants: MCB-0920448 from the NSF, MCB-5G12 RR03060 toward support for the NMR facilities at the City College of New York, P41 GM-66354 to the New York Structural Biology Center and infrastructure support from NIH 5G12 RR03060 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Nanda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanda, V., Koder, R. Designing artificial enzymes by intuition and computation. Nature Chem 2, 15–24 (2010). https://doi.org/10.1038/nchem.473

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing