Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic hook-and-eye nanoparticle sponges

Abstract

Systems in which nanoscale components of different types can be captured and/or released from organic scaffolds provide a fertile basis for the construction of dynamic, exchangeable functional materials. In such heterogeneous systems, the components interact with one another by means of programmable, noncovalent bonding interactions. Herein, we describe polymers that capture and release functionalized nanoparticles selectively during redox-controlled aggregation and disaggregation, respectively. The interactions between the polymer and the NPs are mediated by the reversible formation of polypseudorotaxanes, and give rise to architectures ranging from short chains composed of few nanoparticles to extended networks of nanoparticles crosslinked by the polymer. In the latter case, the polymer/nanoparticle aggregates precipitate from solution such that the polymer acts as a selective ‘sponge’ for the capture/release of the nanoparticles of different types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexation of electron-rich nanoparticles with an electron-deficient polymer.
Figure 2: The polymer/nanoparticle ratio affects the morphology of the resulting complex.
Figure 3: Hierarchical assembly of nanoparticle/polymer complexes.
Figure 4: Reversible binding of TTF-functionalized NPs to 14n+.
Figure 5: Hook-and-eye sorting of nanoparticles.

Similar content being viewed by others

References

  1. Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley, 2008).

    Book  Google Scholar 

  2. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  3. Pease, A. R. et al. Switching devices based on interlocked molecules. Acc. Chem. Res. 34, 433–444 (2001).

    Article  CAS  Google Scholar 

  4. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  5. Klajn, R. et al. Metal nanoparticles functionalized with molecular and supramolecular switches. J. Am. Chem. Soc. 131, 4233–4235 (2009).

    Article  CAS  Google Scholar 

  6. van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  7. Tretiakov, K. V., Bishop, K. J. M. & Grzybowski, B. A. The dependence between forces and dissipation rates mediating dynamic self-assembly. Soft Matter 5, 1279–1284 (2009).

    Article  CAS  Google Scholar 

  8. Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    Article  CAS  Google Scholar 

  9. Grzybowski, B. A. et al. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).

    Article  CAS  Google Scholar 

  10. Saha, S. et al. Nanovalves. Adv. Funct. Mater. 17, 685–693 (2007).

    Article  CAS  Google Scholar 

  11. Nguyen, T. D. et al. Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. J. Am. Chem. Soc. 129, 626–634 (2007).

    Article  CAS  Google Scholar 

  12. Nguyen, T. D. et al. Construction of a pH-driven supramolecular nanovalve. Org. Lett. 8, 3363–3366 (2006).

    Article  CAS  Google Scholar 

  13. Ferris, D. P. et al. Light-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 1686–1688 (2009).

    Article  CAS  Google Scholar 

  14. Zhu, Y. C. & Fujiwara, M. Installing dynamic molecular photomechanics in mesopores: A multifunctional controlled-release nanosystem. Angew. Chem. Int. Ed. 46, 2241–2244 (2007).

    Article  CAS  Google Scholar 

  15. Tanaka, T., Ogino, H. & Iwamoto, M. Photochange in pore diameters of azobenzene-planted mesoporous silica materials. Langmuir 23, 11417–11420 (2007).

    Article  CAS  Google Scholar 

  16. Klajn, R., Bishop, K. J. M., Wesson, P. J. & Grzybowski, B. A. Writing self-erasing images using metastable nanoparticle ‘inks’. Angew. Chem. Int. Ed. 48, 7035–7039 (2009).

    Article  CAS  Google Scholar 

  17. Korth, B. D. et al. Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J. Am. Chem. Soc. 128, 6562–6563 (2006).

    Article  CAS  Google Scholar 

  18. Skaff, H., Ilker, M. F., Coughlin, E. B. & Emrick, T. Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis. J. Am. Chem. Soc. 124, 5729–5733 (2002).

    Article  CAS  Google Scholar 

  19. Watson, K. J., Zhu, J., Nguyen, S. T. & Mirkin, C. A. Hybrid nanoparticles with block copolymer shell structures. J. Am. Chem. Soc. 121, 462–463 (1999).

    Article  CAS  Google Scholar 

  20. Anelli, P. L. et al. Self-assembling [2]pseudorotaxanes. Angew. Chem. Int. Ed. Engl. 30, 1036–1039 (1991).

    Article  Google Scholar 

  21. Ashton, P. R. et al. Thermodynamically controlled self-assembly of pseudorotaxanes and pseudopolyrotaxanes with different recognition motifs operating self-selectively. Angew. Chem. Int. Ed. Engl. 35, 1930–1933 (1996).

    Article  CAS  Google Scholar 

  22. Ashton, P. R. et al. The self-assembly of complexes with [2]pseudorotaxane superstructures. Chem. Commun. 1680–1683 (1991).

  23. Northrop, B. H., Khan, S. J. & Stoddart, J. F. Kinetically controlled self-assembly of pseudorotaxanes on crystallization. Org. Lett. 8, 2159–2162 (2006).

    Article  CAS  Google Scholar 

  24. Boal, A. K. et al. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000).

    Article  CAS  Google Scholar 

  25. Shenhar, R., Norsten, T. B. & Rotello, V. M. Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657–669 (2005).

    Article  CAS  Google Scholar 

  26. Maye, M. M., Chun, S. C., Han, L., Rabinovich, D. & Zhong, C. J. Novel spherical assembly of gold nanoparticles mediated by a tetradentate thioether. J. Am. Chem. Soc. 124, 4958–4959 (2002).

    Article  CAS  Google Scholar 

  27. Paciotti, G. F. et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 11, 169–183 (2004).

    Article  CAS  Google Scholar 

  28. Han, G. et al. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem. Int. Ed. 45, 3165–3169 (2006).

    Article  CAS  Google Scholar 

  29. Liong, M. et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2, 889–896 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  30. Olson, M. A. et al. A bistable poly[2]catenane forms nanosuperstructures. Angew. Chem. Int. Ed. 48, 1792–1797 (2009).

    Article  CAS  Google Scholar 

  31. Philp, D. et al. The complexation of tetrathiafulvalene by cyclobis(paraquat-para-phenylene). Chem. Commun. 1584–1586 (1991).

  32. Ballardini, R. et al. A photochemically driven molecular machine. Angew. Chem. Int. Ed. Engl. 32, 1301–1303 (1993).

    Article  Google Scholar 

  33. Jana, N. R. & Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 125, 14280–14281 (2003).

    Article  CAS  Google Scholar 

  34. Klajn, R. et al. Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science 316, 261–264 (2007).

    Article  CAS  Google Scholar 

  35. Klajn, R. et al. Bulk synthesis and surface patterning of nanoporous metals and alloys from supraspherical nanoparticle aggregates. Adv. Funct. Mater. 18, 2763–2769 (2008).

    Article  CAS  Google Scholar 

  36. Klajn, R., Pinchuk, A. O., Schatz, G. C. & Grzybowski, B. A. Synthesis of heterodimeric sphere-prism nanostructures via metastable gold supraspheres. Angew. Chem. Int. Ed. 46, 8363–8367 (2007).

    Article  CAS  Google Scholar 

  37. Witt, D., Klajn, R., Barski, P. & Grzybowski, B. A. Applications properties and synthesis of omega-functionalized n-alkanethiols and disulfides – the building blocks of self-assembled monolayers. Curr. Org. Chem. 8, 1763–1797 (2004).

    Article  CAS  Google Scholar 

  38. Houk, K. N. et al. [C-H···O] interactions as a control element in supramolecular complexes: Experimental and theoretical evaluation of receptor affinities for the binding of bipyridinium-based guests by catenated hosts. J. Am. Chem. Soc. 121, 1479–1487 (1999).

    Article  CAS  Google Scholar 

  39. Raymo, F. M., Bartberger, M. D., Houk, K. N. & Stoddart, J. F. The magnitude of [C-H···O] hydrogen bonding in molecular and supramolecular assemblies. J. Am. Chem. Soc. 123, 9264–9267 (2001).

    Article  CAS  Google Scholar 

  40. Flory, P. J. Molecular size distribution in three-dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  41. Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11, 45–55 (1943).

    Article  CAS  Google Scholar 

  42. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  43. Kalsin, A. M. et al. Ionic-like behavior of oppositely charged nanoparticles. J. Am. Chem. Soc. 128, 15046–15047 (2006).

    Article  CAS  Google Scholar 

  44. de Gennes, P. G., Pincus, P., Velasco, R. M. & Brochard, F. Remarks on polyelectrolyte conformation. J. Phys. Paris 37, 1461–1473 (1976).

    Article  CAS  Google Scholar 

  45. Dobrynin, A. V., Colby, R. H. & Rubinstein, M. Scaling theory of polyelectrolyte solutions. Macromolecules 28, 1859–1871 (1995).

    Article  CAS  Google Scholar 

  46. Asakawa, M. et al. A chemically and electrochemically switchable [2]catenane incorporating a tetrathiafulvalene unit. Angew. Chem. Int. Ed. 37, 333–337 (1998).

    Article  CAS  Google Scholar 

  47. de Jongh, P. E., Vanmaekelbergh, D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 3427–3430 (1996).

    Article  CAS  Google Scholar 

  48. Wuelfing, W. P., Green, S. J., Pietron, J. J., Cliffel, D. E. & Murray, R. W. Electronic conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J. Am. Chem. Soc. 122, 11465–11472

  49. Nakanishi, H. et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371–375 (2009).

    Article  CAS  Google Scholar 

  50. Credi, A. et al. Simple molecular-level machines. Interchange between different threads in pseudorotaxanes. New J. Chem. 22, 1061–1065 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Microelectronics Advanced Research Corporation and its Focus Center of Functional Engineered NanoArchitectonics. B.A.G. gratefully acknowledges the financial support from the Alfred P. Sloan Fellowship and from The Dreyfus Teacher-Scholar Award. Development of theoretical models was supported by the Non-equilibrium Energy Research Center an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award number DE-SC0000989. R.K. was supported by the NSF under the Northwestern MRSEC. L.F. gratefully acknowledges the support of the Ryan Fellowship at Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

B.A.G. and J.F.S. conceived the project and prepared the manuscript. M.A.O. synthesized polymer 14n+. L.F., A.C. and M.A.O. synthesized dithiolane ligands for nanoparticles. R.K. synthesized and functionalized nanoparticles and prepared nanoparticle–polymer complexes. P.J.W. and S.S. developed theoretical models. A.T. performed electrochemical experiments.

Corresponding authors

Correspondence to J. Fraser Stoddart or Bartosz A. Grzybowski.

Supplementary information

Supplementary information

Supplementary information (PDF 945 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klajn, R., Olson, M., Wesson, P. et al. Dynamic hook-and-eye nanoparticle sponges. Nature Chem 1, 733–738 (2009). https://doi.org/10.1038/nchem.432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing