Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells

Abstract

The most efficient plastic solar cells comprise a blend of conjugated polymer and a suitable electron acceptor, typically a fullerene derivative. Therefore narrow-bandgap conjugated polymers are currently sought for the fabrication of such devices. A significant challenge is being able to predict device function and performance from consideration of the molecular connectivity and dimensions of the partners within the active layer. Improved chemical syntheses are therefore required to make structurally varied polymers and enable the delineation of structure–function relationships with the aim of improving power conversion efficiencies. Here, we demonstrate that microwave heating in combination with the screening of comonomer reactant ratios can be used to obtain donor–acceptor copolymers with high average molecular weights and properties that make them suitable for solar cell incorporation. Furthermore, we highlight the importance of high molecular weight and the contribution of solubilizing side groups in determining the final device properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular structures and syntheses of P1, P2 and PCPDTBT.
Figure 2: The UV–vis absorption spectra of P1, P2 and PCPDTBT prepared via microwave irradiation.
Figure 3: Selected area electron diffraction (SAED) patterns can be used to evaluate the internal order of the polymer films.
Figure 4: The solar cell characteristics of bulk heterojunction devices prepared from P1 or P2 and PC71BM.
Figure 5: The current density–voltage characteristics of P2:PC71BM solar cells as a function of number average molecular weight (Mn).

Similar content being viewed by others

References

  1. Gilles, D., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009).

    Article  Google Scholar 

  2. Peet, J., Heeger, A. J. & Bazan, G. C. Plastic solar cells: self-assembly by bulk heterojunction nanomaterials by spontaneous phase separation. Acc. Chem. Res. doi: 10.1021/ar900065j, (2009).

    Article  CAS  Google Scholar 

  3. Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. C. 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  4. Kippelen, B. & Bredas, J. L. Organic photovoltaics. Ener. Env. Sci. 2, 251–261 (2009).

    Article  CAS  Google Scholar 

  5. Blom, P. W. M., Mihailetchi, V. D., Koster, L. A. J. & Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    Article  CAS  Google Scholar 

  6. Kroon, R., Lenes, M., Hummelen, J. C., Blom, P. W. M. & de Boer, B. Small bandgap polymers for organic solar cells (polymer material development in the last five years). Polymer Rev. 48, 531–582 (2008).

    Article  CAS  Google Scholar 

  7. Scharber M. C. et al. Design rules for donors in bulk heterojunction solar cells – towards 10% energy conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  CAS  Google Scholar 

  8. Park, S. H. et al. Bulk heterojunction solar cells with internal quantul efficiency approaching 100%. Nature Photon. 3, 297–302 (2009).

    Article  CAS  Google Scholar 

  9. Liang, Y. et al. Development of new semi-conducting polymers for high performance solar cells. J. Am. Chem. Soc. 131, 56–57 (2009).

    Article  CAS  Google Scholar 

  10. Liang, Y. et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J. Am. Chem. Soc. 131, 7792–7799 (2009).

    Article  CAS  Google Scholar 

  11. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  CAS  Google Scholar 

  12. Lee, J. K. et al. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008).

    Article  CAS  Google Scholar 

  13. Yang, X. & Loos, J. Towards high-performance polymer solar cells: the importance of morphology control. Macromolecules 40, 1353–1362 (2007).

    Article  CAS  Google Scholar 

  14. Kim et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Mater. 5, 197–203 (2006).

    Article  CAS  Google Scholar 

  15. Chen, M.-H. et al. Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv. Mater. 21, 1–5 (2009).

    Article  Google Scholar 

  16. Zhu, Z. et al. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 40, 1981–1986 (2007).

    Article  CAS  Google Scholar 

  17. Hou, J., Chen, H.-Y., Zhang, S., Li, G. & Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    Article  CAS  Google Scholar 

  18. Muhlbacher, D. et al. High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006).

    Article  Google Scholar 

  19. Tierney, S., Heeney, M. & McCulloch, I. Microwave-assisted synthesis od polythiophene via the Stille coupling. Synth. Met. 148, 195–198 (2005).

    Article  CAS  Google Scholar 

  20. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  21. Chen, J. & Cao, Y. Silole-containing polymers: chemistry and optoelectronic properties. Macromol. Rapid Commun. 28, 1714–1742 (2007).

    Article  CAS  Google Scholar 

  22. Brzezinski, J. Z. & Reynolds, J. R. A new, improved and convenient synthesis of 4H-cyclopenta[2,1-b:3,4-b′]-dithiophen-4-one. Synthesis 1053–1056 (2002).

  23. Coppo, P., Cupertino, D. C., Yeates, S. G. & Turner, M. L. Synthetic routes to solution- processable polycyclopentadithiophenes. Macromolecules 36, 2705–2711 (2003).

    Article  CAS  Google Scholar 

  24. Usta, H., Lu, G., Facchetti, A. & Marks, T. J. Dithienosilole– and dibenzosilole–thiophene copolymers as semiconductors for organic thin-film transistors. J. Am. Chem. Soc. 128, 9034–9035 (2006).

    Article  CAS  Google Scholar 

  25. Pilgram, K., Zupan, M., Skiles, R. Bromination of 2,1,3-benzothiadiazoles. J. Heterocyclic Chem. 7, 629–633 (1970).

    Article  CAS  Google Scholar 

  26. Bao, Z., Chen, W. K. & Yu, L. Exploration of the Stille coupling reaction for the synthesis of functional polymers. J. Am. Chem. Soc. 117, 12426–12435 (1995).

    Article  CAS  Google Scholar 

  27. Carter, K. Ni(0)-mediated coupling polymerization via microwave-assisted chemistry. Macromolecules 35, 6757–6759 (2002).

    Article  CAS  Google Scholar 

  28. Nehls, B. S. et al. Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv. Funct. Mater. 14, 352–356 (2004).

    Article  CAS  Google Scholar 

  29. Olofsson, K. & Larhed, M. in Microwave Assisted Organic Synthesis (eds Lidstrom, P. & Tierney, J. P.) Ch. 2 (Blackwell, 2004).

    Google Scholar 

  30. Kappe, C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004).

    Article  CAS  Google Scholar 

  31. Galbrect, F., Bünnagel, T. W., Scherf, U. & Farrell, T. Microwave-assisted preparation of semiconducting polymers. Macromol. Rapid Commun. 29, 387–394 (2007).

    Article  Google Scholar 

  32. Peet, J., Cho, N. S., Lee, S. K. & Bazan, G. C. Transition from solution to the solid state in polymer solar cells cast from mixed solvents. Macromolecules 41, 8655–8659 (2008).

    Article  CAS  Google Scholar 

  33. Yang, X. et al. Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005).

    Article  CAS  Google Scholar 

  34. Tsao, H. N. et al. The influence of morphology on high-performance polymer field-effect transistors. Adv. Mater. 21, 209–212 (2009).

    Article  CAS  Google Scholar 

  35. Chen, F.-C., Tseng, H.-C. & Ko, C.-J. Solvent mixtures for improving device efficiency of polymer photovoltaic devices. Appl. Phys. Lett. 92, 103316 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from the Department of Energy, the Institute for Collaborative Biotechnologies and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

R.C.C. synthesized and characterized the polymers, J.P. fabricated and tested the solar cells, J.R. collected the SAED data, G.C.B. organized the project and directed data analysis.

Corresponding author

Correspondence to Guillermo C. Bazan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1294 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffin, R., Peet, J., Rogers, J. et al. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells. Nature Chem 1, 657–661 (2009). https://doi.org/10.1038/nchem.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing