Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners

Abstract

Stephacidin A and its congeners are a collection of secondary metabolites that possess intriguing structural motifs. They stem from unusual biosynthetic sequences that lead to the incorporation of a prenyl or reverse-prenyl group into a bicyclo[2.2.2]diazaoctane framework, a chromene unit or the vestige thereof. To complement biosynthetic studies, which normally play a significant role in unveiling the biosynthetic pathways of natural products, here we demonstrate that chemical synthesis can provide important insights into biosynthesis. We identify a short total synthesis of congeners in the reverse-prenylated indole alkaloid family related to stephacidin A by taking advantage of a direct indole C6 halogenation of the related ketopremalbrancheamide. This novel strategic approach has now made possible the syntheses of several natural products, including malbrancheamides B and C, notoamides F, I and R, aspergamide B, and waikialoid A, which is a heterodimer of avrainvillamide and aspergamide B. Our approach to the preparation of these prenylated and reverse-prenylated indole alkaloids is bioinspired, and may also inform the as-yet undetermined biosynthesis of several congeners.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected reverse-prenylated indole alkaloid congeners.
Figure 2: Hypotheses for the biosynthesis of stephacidin A congeners.
Figure 3: Synthetic strategy for stephacidin A and the application of C6 halogenation.
Figure 4: Syntheses of stephacidin A and congeners.
Figure 5: Conjugation possibilities for aspergamide B and avrainvillamide.

Similar content being viewed by others

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS  PubMed  Google Scholar 

  2. Gerwick, W. H. & Moore, B. S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19, 85–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Harvey, A. L., Edrada-Ebel, R. & Quinn, R. J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111–129 (2015).

    CAS  PubMed  Google Scholar 

  4. Montaser, R. & Luesch, H. Marine natural products: a new wave of drugs? Future Med. Chem. 3, 1475–1489 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams, R. M. Natural products synthesis: enabling tools to penetrate nature's secrets of biogenesis and biomechanism. J. Org. Chem. 76, 4221–4259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Finefield, J. M., Frisvad, J. C., Sherman, D. H. & Williams, R. M. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. J. Nat. Prod. 75, 812–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, S.-M. Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 27, 57–78 (2010).

    PubMed  Google Scholar 

  8. Qian-Cutrone, J., Krampitz, K. D., Shu, Y.-Z., Chang, L. P. & Lowe, S. E. Stephacidin antitumor antibiotics. US patent 6,291,461 (2001).

  9. Qian-Cutrone, J. et al. Stephacidin A and B: two structurally novel, selective inhibitors of the testosterone-dependent prostate LNCaP cells. J. Am. Chem. Soc. 124, 14556–14557 (2002).

    CAS  PubMed  Google Scholar 

  10. Lavey, N. P., Coker, J. A., Ruben, E. A. & Duerfeldt, A. S. Sclerotiamide: the first non-peptide-based natural product activator of bacterial caseinolytic protease P. J. Nat. Prod. 79, 1193–1197 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, X., You, J., King, J. B., Powell, D. R. & Cichewicz, R. H. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J. Nat. Prod. 75, 707–715 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Little, P. R. et al. Efficacy of a combined oral formulation of derquantel-abamectin against the adult and larval stages of nematodes in sheep, including anthelmintic-resistant strains. Vet. Parasitol. 181, 180–193 (2011).

    CAS  PubMed  Google Scholar 

  13. Birch, A. J. & Wright, J. J. Studies in relation to biosynthesis—XLII: the structural elucidation and some aspects of the biosynthesis of the brevianamides-A and -E. Tetrahedron 26, 2329–2344 (1970).

    CAS  PubMed  Google Scholar 

  14. Porter, A. E. A. & Sammes, P. G. A Diels–Alder reaction of possible biosynthetic importance. J. Chem. Soc. D 1103a (1970).

  15. Sunderhaus, J. D. et al. Synthesis and bioconversions of notoamide T: a biosynthetic precursor to stephacidin A and notoamide B. Org. Lett. 15, 22–25 (2013).

    CAS  PubMed  Google Scholar 

  16. Mugishima, T. et al. Absolute stereochemistry of citrinadins A and B from marine-derived fungus. J. Org. Chem. 70, 9430–9435 (2005).

    CAS  PubMed  Google Scholar 

  17. Fuchser, J. Beeinflussung der sekundärstoffbildung bei Aspergillus ochraceus durch variation der kulturbedingungen sowie isolierung, strukturaufklärung und biosynthese der neuen Naturstoffe. PhD thesis, Georg-August-Universität Göttingen (1995).

  18. von Nussbaum, F. Stephacidin B—a new stage of complexity within prenylated indole alkaloids from fungi. Angew. Chem. Int. Ed. 42, 3068–3071 (2003).

    CAS  Google Scholar 

  19. Herzon, S. B. & Myers, A. G. Enantioselective synthesis of stephacidin B. J. Am. Chem. Soc. 127, 5342–5344 (2005).

    CAS  PubMed  Google Scholar 

  20. Baran, P. S., Guerrero, C. A., Hafensteiner, B. D. & Ambhaikar, N. B. Total synthesis of avrainvillamide (CJ-17665) and stephacidin B. Angew. Chem. Int. Ed. 44, 3892–3895 (2005).

    CAS  Google Scholar 

  21. Baran, P. S., Guerrero, C. A., Ambhaikar, N. B. & Hafensteiner, B. D. Short, enantioselective total synthesis of stephacidin A. Angew. Chem. Int. Ed. 44, 606–609 (2005).

    CAS  Google Scholar 

  22. Baran, P. S., Hafensteiner, B. D., Ambhaikar, N. B., Guerrero, C. A. & Gallagher, J. D. Enantioselective total synthesis of avrainvillamide and the stephacidins. J. Am. Chem. Soc. 128, 8678–8693 (2006).

    CAS  PubMed  Google Scholar 

  23. Artman, G. D., Grubbs, A. W. & Williams, R. M. Concise, asymmetric, stereocontrolled total synthesis of stephacidins A, B and notoamide B. J. Am. Chem. Soc. 129, 6336–6342 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Simpkins, N. S., Pavlakos, I., Weller, M. D. & Male, L. The cascade radical cyclisation approach to prenylated alkaloids: synthesis of stephacidin A and notoamide B. Org. Biomol. Chem. 11, 4957–4970 (2013).

    CAS  PubMed  Google Scholar 

  25. Mercado-Martin, E. V. & Sarpong, R. Unified approach to prenylated indole alkaloids: total syntheses of (–)-17-hydroxy-citrinalin B, (+)-stephacidin A, and (+)-notoamide I. Chem. Sci. 6, 5048–5052 (2015).

    Google Scholar 

  26. Jin, S., Wessig, P. & Liebscher, J. Intermolecular and intramolecular Diels−Alder cycloadditions of 3-ylidenepiperazine-2,5-diones and 5-acyloxy-2(1H)-pyrazinones. J. Org. Chem. 66, 3984–3997 (2001).

    CAS  PubMed  Google Scholar 

  27. Watts, K. R. et al. Utilizing DART mass spectrometry to pinpoint halogenated metabolites from a marine invertebrate-derived fungus. J. Org. Chem. 76, 6201–6208 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Figueroa, M., González, M. D. C. & Mata, R. Malbrancheamide B, a novel compound from the fungus Malbranchea aurantiaca. Nat. Prod. Res. 22, 709–714 (2008).

    CAS  PubMed  Google Scholar 

  29. Frebault, F. C. & Simpkins, N. S. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 66, 6585–6596 (2010).

    CAS  Google Scholar 

  30. Feng, Y. et al. Total synthesis of verruculogen and fumitremorgin A enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc. 137, 10160–10163 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014).

    CAS  PubMed  Google Scholar 

  32. Yang, Y., Li, R., Zhao, Y., Zhao, D. & Shi, Z. Cu-catalyzed direct C6-arylation of indoles. J. Am. Chem. Soc. 138, 8734–8737 (2016).

    CAS  PubMed  Google Scholar 

  33. Leitch, J. A., McMullin, C. L., Mahon, M. F., Bhonoah, Y. & Frost, C. G. Remote C6-selective ruthenium-catalyzed C–H alkylation of indole derivatives via σ-activation. ACS Catal. 7, 2616–2623 (2017).

    CAS  Google Scholar 

  34. Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. (in the press).

  35. Hino, T., Endo, M., Tonozuka, M. & Nakagawa, M. Bromination of 2-ethylthio- and 2-ethanesulfonyl-3-substituted indoles with N-bromosuccinimide. Isolation and reactivities of 1-bromoindoles and 3-bromoindolenines. Heterocycles 2, 565–570 (1974).

    CAS  Google Scholar 

  36. Ikeda, M. & Tamura, Y. 3-Haloindolenines—versatile intermediates in the indole chemistry. Heterocycles 14, 867–888 (1980).

    CAS  Google Scholar 

  37. Kubota, K., Iwamoto, H. & Ito, H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org. Biomol. Chem. 15, 285–300 (2017).

    CAS  PubMed  Google Scholar 

  38. Mfuh, A. M., Doyle, J. D., Chhetri, B., Arman, H. D. & Larionov, O. V. Scalable, metal- and additive-free, photoinduced borylation of haloarenes and quaternary arylammonium salts. J. Am. Chem. Soc. 138, 2985–2988 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, K., Zhang, S., He, P. & Li, P. Efficient metal-free photochemical borylation of aryl halides under batch and continuous-flow conditions. Chem. Sci. 7, 3676–3680 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cambié, D ., Bottecchia, C., Straathof, N. J. W., Hessel, V. & Noël, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 116, 10276–10341 (2016).

    PubMed  Google Scholar 

  41. Cox, R. J. & Williams, R. M. Synthetic studies towards paraherquamide F: synthesis of the 1,7-dihydropyrano[2,3-g]indole ring system. Tetrahedron Lett. 43, 2149–2152 (2002).

    CAS  Google Scholar 

  42. Lodewyk, M. W., Siebert, M. R. & Tantillo, D. J. Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 112, 1839–1862 (2012).

    CAS  PubMed  Google Scholar 

  43. Fenical, W., Jensen, P. R. & Cheng, X. C. Avrainvillamide, a cytotoxic marine natural product, and derivatives thereof. US patent 6,066,635 (2000).

  44. Sugie, Y. et al. A new antibiotic CJ-17665 from Aspergillus ochraceus. J. Antibiot. 54, 911–916 (2001).

    CAS  PubMed  Google Scholar 

  45. Tsukamoto, S. et al. Notoamides F−K, prenylated indole alkaloids isolated from a marine-derived Aspergillus sp. J. Nat. Prod. 71, 2064–2067 (2008).

    CAS  PubMed  Google Scholar 

  46. Kito, K., Ookura, R., Kusumi, T., Namikoshi, M. & Ooi, T. X-ray structures of two stephacidins, heptacyclic alkaloids from the marine-derived fungus Aspergillus ostianus. Heterocycles 78, 2101–2106 (2009).

    CAS  Google Scholar 

  47. Tsukamoto, S., Umaoka, H., Yoshikawa, K., Ikeda, T. & Hirota, H. Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P−R from a marine-derived fungus, Aspergillus sp. J. Nat. Prod. 73, 1438–1440 (2010).

    CAS  PubMed  Google Scholar 

  48. Zhang, B., Zheng, W., Wang, X., Sun, D. & Li, C. Total synthesis of notoamide F, I, and sclerotiamide. Angew. Chem. Int. Ed. 55, 10435–10438 (2016).

    CAS  Google Scholar 

  49. Newmister, S. A. et al. Oxad: a versatile indolic nitrone synthase from the marine-derived fungus Penicillium oxalicum F30. J. Am. Chem. Soc. 138, 11176–11184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, L. et al. Versicoamides F–H, prenylated indole alkaloids from Aspergillus tennesseensis. Org. Lett. 19, 942–945 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the US National Institutes of Health (NIH) (NIGMS RO1 086374). We are grateful for a Japan Society for the Promotion of Science Postdoctoral Fellowship to K.M., a Science without Borders Postdoctoral Fellowship to D.P.S. (Brazil; CSF/CNPq 200205/2014-5), the US National Science Foundation (NSF) Graduate Research Fellowship Program, the American Chemical Society Division of Organic Chemistry and the Hellman Graduate Awards Program (University of California (UC) Berkeley) for awards to E.V.M.-M. and the Natural Sciences and Engineering Research Council of Canada for a Postdoctoral Fellowship to K.G.M.K. We are grateful to D. H. Sherman (University of Michigan) and R. M. Williams (Colorado State University), as well as D. Tantillo (UC Davis), for helpful discussions regarding the prenylated and reverse-prenylated indole alkaloids, and the NMR CMAD computational analysis, respectively. We thank R. Cichewicz (University of Oklahoma) for an authentic sample of waikialoid A as well as for an initial secondary metabolite screen on the producing P. aspergillus sp. A. Zeeck (Georg-August-Universität Göttingen) is graciously acknowledged for his tireless efforts to locate and obtain analytical data for the material reported by his laboratory in 1995 to be aspergamide B. X-ray crystallography instrumentation is supported by NIH Shared Instrumentation Grant S10-RR027172. The AV-600, AV-500, DRX-500, AVQ-400 and AVB-400 NMR spectrometers are partially supported by NIH Grants SRR023679A and 1S10RR016634-01 and NSF Grants CHE-9633007 and CHE-0130862. The 900 MHz NMR instrument is funded by NIH Grant GM68933. The Molecular Graphics and Computation Facility is funded by the NIH (S10OD023532). We thank K. Owens (UC Berkeley), K. Durkin (UC Berkeley) and Y. Olatunji-Ojo (UC Berkeley) for assistance with DFT computations and A. G. DiPasquale for X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

R.S., K.M. and D.P.S. designed the research with assistance from Y.H. and E.V.M.-M. All synthetic chemistry was performed by K.M., D.P.S., Y.H., E.V.M.-M., D.E.S., S.C.R. and N.K. Computational studies were conducted by D.E.S., K.G.M.K. and K.M. R.S. wrote the manuscript with contributions from all the authors; all the authors were actively engaged in the editing of the manuscript and gave their approval of the final version. K.M. and D.P.S. contributed equally to this work.

Corresponding author

Correspondence to Richmond Sarpong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 20192 kb)

Supplementary information

Crystallographic data for compound X (CIF 2292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukai, K., de Sant'Ana, D., Hirooka, Y. et al. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners. Nature Chem 10, 38–44 (2018). https://doi.org/10.1038/nchem.2862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing