Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signal transduction in a covalent post-assembly modification cascade

Abstract

Natural reaction cascades control the movement of biomolecules between cellular compartments. Inspired by these systems, we report a synthetic reaction cascade employing post-assembly modification reactions to direct the partitioning of supramolecular complexes between phases. The system is composed of a self-assembled tetrazine-edged FeII8L12 cube and a maleimide-functionalized FeII4L6 tetrahedron. Norbornadiene (NBD) functions as the stimulus that triggers the cascade, beginning with the inverse-electron-demand Diels–Alder reaction of NBD with the tetrazine moieties of the cube. This reaction generates cyclopentadiene as a transient by-product, acting as a relay signal that subsequently undergoes a Diels–Alder reaction with the maleimide-functionalized tetrahedron. Cyclooctyne can selectively inhibit the cascade by outcompeting NBD as the initial trigger. Initiating the cascade with 2-octadecyl NBD leads to selective alkylation of the tetrahedron upon cascade completion. The increased lipophilicity of the C18-tagged tetrahedron drives this complex into a non-polar phase, allowing its isolation from the initially inseparable mixture of complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of syntheses and PAM cascade.
Figure 2: Depictions (same scale) of the X-ray crystal structures.
Figure 3: Monitoring the model PAM cascade.
Figure 4: Monitoring the inhibited PAM cascade.
Figure 5: Signal transduction leading to phase segregation of the two product complexes.

Similar content being viewed by others

References

  1. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Snider, N. T. & Omary, M. B. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15, 163–177 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).

    CAS  PubMed  Google Scholar 

  4. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    CAS  PubMed  Google Scholar 

  5. Thomas, D. D. et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45, 18–31 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Q.-Q. et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nat. Chem. 8, 225–230 (2016).

    CAS  PubMed  Google Scholar 

  7. Cullen, W., Misuraca, M. C., Hunter, C. A., Williams, N. H. & Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 8, 231–236 (2016).

    CAS  PubMed  Google Scholar 

  8. Kaphan, D. M., Levin, M. D., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 350, 1235–1238 (2015).

    CAS  PubMed  Google Scholar 

  9. Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).

    CAS  PubMed  Google Scholar 

  10. Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nat. Chem. 5, 100–103 (2013).

    CAS  PubMed  Google Scholar 

  11. Salles, A. G., Zarra, S., Turner, R. M. & Nitschke, J. R. A self-organizing chemical assembly line. J. Am. Chem. Soc. 135, 19143–19146 (2013).

    CAS  PubMed  Google Scholar 

  12. Pramanik, S. & Aprahamian, I. Hydrazone switch-based negative feedback loop. J. Am. Chem. Soc. 138, 15142–15145 (2016).

    CAS  PubMed  Google Scholar 

  13. Lutz, J.-F. 1,3-Dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed. 46, 1018–1025 (2007).

    CAS  Google Scholar 

  14. Agard, N. J., Baskin, J. M., Prescher, J. A., Lo, A. & Bertozzi, C. R. A comparative study of bioorthogonal reactions with azides. ACS Chem. Biol. 1, 644–648 (2006).

    CAS  PubMed  Google Scholar 

  15. Foster, R. A. A. & Willis, M. C. Tandem inverse-electron-demand hetero-/retro-Diels–Alder reactions for aromatic nitrogen heterocycle synthesis. Chem. Soc. Rev. 42, 63–76 (2013).

    CAS  PubMed  Google Scholar 

  16. Roberts, D. A. et al. Post-assembly modification of tetrazine-edged FeII4L6 tetrahedra. J. Am. Chem. Soc. 137, 10068–10071 (2015).

    CAS  PubMed  Google Scholar 

  17. Wang, W., Wang, Y.-X. & Yang, H.-B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chem. Soc. Rev. 45, 2656–2693 (2016).

    CAS  PubMed  Google Scholar 

  18. Young, M. C., Johnson, A. M. & Hooley, R. J. Self-promoted post-synthetic modification of metal-ligand M2L3 mesocates. Chem. Commun. 50, 1378–1380 (2014).

    CAS  Google Scholar 

  19. Roberts, D. A., Castilla, A. M., Ronson, T. K. & Nitschke, J. R. Post-assembly modification of kinetically metastable FeII2L3 triple helicates. J. Am. Chem. Soc. 136, 8201–8204 (2014).

    CAS  PubMed  Google Scholar 

  20. Glasson, C. R. K. et al. Post-assembly covalent di- and tetracapping of a dinuclear [Fe2L3]4+ triple helicate and two [Fe4L6]8+ tetrahedra using sequential reductive aminations. Inorg. Chem. 54, 6986–6992 (2015).

    CAS  PubMed  Google Scholar 

  21. Zhao, D. et al. Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv. Mater. 23, 90–93 (2011).

    CAS  PubMed  Google Scholar 

  22. Kaucher, M. S., Harrell, W. A. & Davis, J. T. A unimolecular G-quadruplex that functions as a synthetic transmembrane Na+ transporter. J. Am. Chem. Soc. 128, 38–39 (2006).

    CAS  PubMed  Google Scholar 

  23. Schneider, M. W., Oppel, I. M., Griffin, A. & Mastalerz, M. Post-modification of the interior of porous shape-persistent organic cage compounds. Angew. Chem. Int. Ed. 52, 3611–3615 (2013).

    CAS  Google Scholar 

  24. Ronson, T. K., Pilgrim, B. S. & Nitschke, J. R. Pathway-dependent post-assembly modification of an anthracene-edged MII4L6 tetrahedron. J. Am. Chem. Soc. 138, 10417–10420 (2016).

    CAS  PubMed  Google Scholar 

  25. Marcos, V. et al. Allosteric initiation and regulation of catalysis with a molecular knot. Science 352, 1555–1559 (2016).

    CAS  PubMed  Google Scholar 

  26. Meyer, C. D., Joiner, C. S. & Stoddart, J. F. Template-directed synthesis employing reversible imine bond formation. Chem. Soc. Rev. 36, 1705–1723 (2007).

    CAS  PubMed  Google Scholar 

  27. Crowley, J. D., Goldup, S. M., Lee, A.-L., Leigh, D. A. & McBurney, R. T. Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. Chem. Soc. Rev. 38, 1530–1541 (2009).

    CAS  PubMed  Google Scholar 

  28. Wood, C. S., Ronson, T. K., Belenguer, A. M., Holstein, J. J. & Nitschke, J. R. Two-stage directed self-assembly of a cyclic [3]catenane. Nat. Chem. 7, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  29. Chakrabarty, R. & Stang, P. J. Post-assembly functionalization of organoplatinum(II) metallacycles via copper-free click chemistry. J. Am. Chem. Soc. 134, 14738–14741 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Browne, C., Brenet, S., Clegg, J. K. & Nitschke, J. R. Solvent-dependent host–guest chemistry of an Fe8L12 cubic capsule. Angew. Chem. Int. Ed. 52, 1944–1948 (2013).

    CAS  Google Scholar 

  31. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Duncton, M. A. J. Minisci reactions: versatile CH-functionalizations for medicinal chemists. Med. Chem. Commun. 2, 1135–1161 (2011).

    CAS  Google Scholar 

  33. Audebert, P. et al. Synthesis of new substituted tetrazines: electrochemical and spectroscopic properties. New J. Chem. 28, 387–392 (2004).

    CAS  Google Scholar 

  34. Li, Z. & Ding, J. Bisfuran-s-tetrazine-based conjugated polymers: synthesis, characterization, and photovoltaic properties. Macromol. Chem. Phys. 212, 2260–2267 (2011).

    CAS  Google Scholar 

  35. Hagiya, K., Muramoto, N., Misaki, T. & Sugimura, T. DMEAD: a new dialkyl azodicarboxylate for the Mitsunobu reaction. Tetrahedron 65, 6109–6114 (2009).

    CAS  Google Scholar 

  36. Hristova, Y. R., Smulders, M. M. J., Clegg, J. K., Breiner, B. & Nitschke, J. R. Selective anion binding by a ‘Chameleon’ capsule with a dynamically reconfigurable exterior. Chem. Sci. 2, 638–641 (2011).

    CAS  Google Scholar 

  37. Li, L. et al. Multiple stimuli-responsive supramolecular gels constructed from metal–organic cycles. Polym. Chem. 7, 6288–6292 (2016).

    CAS  Google Scholar 

  38. Han, M. et al. Light-controlled interconversion between a self-assembled triangle and a rhombicuboctahedral sphere. Angew. Chem. Int. Ed. 55, 445–449 (2016).

    CAS  Google Scholar 

  39. Tashiro, S. & Shionoya, M. Stimuli-responsive synthetic metallopeptides. Chem. Lett. 42, 456–462 (2013).

    CAS  Google Scholar 

  40. Ko, S.-K. et al. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat. Chem. 6, 885–892 (2014).

    CAS  PubMed  Google Scholar 

  41. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    PubMed  Google Scholar 

  42. Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    CAS  PubMed  Google Scholar 

  43. Jansze, S. M., Wise, M. D., Vologzhanina, A. V., Scopelliti, R. & Severin, K. PdII2L4-type coordination cages up to three nanometers in size. Chem. Sci. 8, 1901–1908 (2017).

    CAS  PubMed  Google Scholar 

  44. Fujita, D. et al. Self-assembly of M30L60 icosidodecahedron. Chem 1, 91–101 (2016).

    CAS  Google Scholar 

  45. Pilgrim, B. S. & Nitschke, J. R. That's no moon: it's a molecular capsule. Chem 1, 19–21 (2016).

    CAS  Google Scholar 

  46. Kim, T. et al. Selective synthesis of molecular Borromean rings: engineering of supramolecular topology via coordination-driven self-assembly. J. Am. Chem. Soc. 138, 8368–8371 (2016).

    CAS  PubMed  Google Scholar 

  47. Tanaka, K., Tengeiji, A., Kato, T., Toyama, N. & Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  PubMed  Google Scholar 

  48. Rizzuto, F. J. & Nitschke, J. R. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nat. Chem. http://dx.doi.org/10.1038/nchem.2758 (2017).

  49. Ward, M. D. & Raithby, P. R. Functional behaviour from controlled self-assembly: challenges and prospects. Chem. Soc. Rev. 42, 1619–1636 (2013).

    CAS  PubMed  Google Scholar 

  50. Zheng, W. et al. Construction of smart supramolecular polymeric hydrogels cross-linked by discrete organoplatinum(II) metallacycles via post-assembly polymerization. J. Am. Chem. Soc. 138, 4927–4937 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

B.S.P. acknowledges support from the Herchel Smith Research Fellowship, the Royal Commission for the Exhibition of 1851 Research Fellowship and the Fellowship from Corpus Christi College, Cambridge. D.A.R. acknowledges support from the Gates Cambridge Trust. This work was also supported by the UK Engineering and Physical Sciences Research Council (EPSRC, EP/M008258/1). The authors acknowledge Diamond Light Source (UK) for synchrotron beamtime on I19 (MT11397), the NMR facility at the University of Cambridge Chemistry Department and the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Author information

Authors and Affiliations

Authors

Contributions

B.S.P., D.A.R. and J.R.N. conceived the initial ideas for the project. B.S.P. and D.A.R. designed the complexes. B.S.P., D.A.R. and T.G.L. performed the synthetic work. B.S.P. and D.A.R. characterized the compounds, performed the cascades and grew the single crystals. T.K.R. collected diffraction data and solved and refined the X-ray crystal structures. B.S.P. prepared the initial draft of the paper and all authors contributed to the final draft of the paper.

Corresponding author

Correspondence to Jonathan R. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7765 kb)

Supplementary information

Crystallographic data for compound 1b (CIF 7583 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 3670 kb)

Supplementary information

Crystallographic data for compound 4a (CIF 13868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilgrim, B., Roberts, D., Lohr, T. et al. Signal transduction in a covalent post-assembly modification cascade. Nature Chem 9, 1276–1281 (2017). https://doi.org/10.1038/nchem.2839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2839

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing