Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles

Abstract

Many intracellular membraneless organelles form via phase separation of intrinsically disordered proteins (IDPs) or regions (IDRs). These include the Caenorhabditis elegans protein LAF-1, which forms P granule-like droplets in vitro. However, the role of protein disorder in phase separation and the macromolecular organization within droplets remain elusive. Here, we utilize a novel technique, ultrafast-scanning fluorescence correlation spectroscopy, to measure the molecular interactions and full coexistence curves (binodals), which quantify the protein concentration within LAF-1 droplets. The binodals of LAF-1 and its IDR display a number of unusual features, including ‘high concentration’ binodal arms that correspond to remarkably dilute droplets. We find that LAF-1 and other in vitro and intracellular droplets are characterized by an effective mesh size of 3–8 nm, which determines the size scale at which droplet properties impact molecular diffusion and permeability. These findings reveal how specific IDPs can phase separate to form permeable, low-density (semi-dilute) liquids, whose structural features are likely to strongly impact biological function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measured binodals for the RGG domain and LAF-1.
Figure 2: RNA and salt influence intermolecular interactions of LAF-1 and RGG.
Figure 3: Summary of computational and theoretical analyses.
Figure 4: Nanoscale rheology of RGG and LAF-1 condensed droplets.
Figure 5: Low-density semidilute liquid droplets.

Similar content being viewed by others

References

  1. Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl Acad. Sci. USA 108, 4334–4339 (2011).

    Article  CAS  Google Scholar 

  2. Sleeman, J. E. & Trinkle-Mulcahy, L. Nuclear bodies: new insights into assembly/dynamics and disease relevance. Curr. Opin. Cell Biol. 28, 76–83 (2014).

    Article  CAS  Google Scholar 

  3. Han, T. W. et al. Cell-free formation of RNA granules bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  Google Scholar 

  4. Patel, A . et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  Google Scholar 

  5. Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729–1732 (2009).

    Article  CAS  Google Scholar 

  6. Lee, C. F., Brangwynne, C. P., Gharakhani, J., Hyman, A. A. & Juelicher, F. Spatial organization of the cell cytoplasm by position-dependent phase separation. Phys. Rev. Lett. 111, 088101 (2013).

    Article  Google Scholar 

  7. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    Article  CAS  Google Scholar 

  8. Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. Nat. Phys. 11, 899–904 (2015).

    Article  CAS  Google Scholar 

  9. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    Article  CAS  Google Scholar 

  10. Murakami, T . et al. Als/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678–690 (2015).

    Article  CAS  Google Scholar 

  11. Zhang, H. et al. RNA controls PolyQ protein phase transitions. Mol. Cell 60, 220–230 (2015).

    Article  CAS  Google Scholar 

  12. Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc. Natl Acad. Sci. USA 112, 7189–7194 (2015).

    Article  CAS  Google Scholar 

  13. Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

    Article  CAS  Google Scholar 

  14. Molliex, A . et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

    Article  CAS  Google Scholar 

  15. Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015).

    Article  CAS  Google Scholar 

  16. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    Article  CAS  Google Scholar 

  17. Voronina, E., Seydoux, G., Sassone-Corsi, P. & Nagamori, I. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3, a002774 (2011).

    Article  Google Scholar 

  18. Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically-disordered proteins in C. elegans. eLife 3, e04591 (2014).

    Article  Google Scholar 

  19. Saha, S . et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166, 1572–1584 (2016).

    Article  CAS  Google Scholar 

  20. Feric, M . et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).

    Article  CAS  Google Scholar 

  21. Pak, C. W . et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63, 72–85 (2016).

    Article  CAS  Google Scholar 

  22. Aumiller, W. M. Jr & Keating, C. D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8, 129–137 (2016).

    Article  CAS  Google Scholar 

  23. Magde, D., Webb, W. W. & Elson, E. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).

    Article  CAS  Google Scholar 

  24. Pitschke, M., Prior, R., Haupt, M. & Riesner, D. Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer's patients by fluorescence correlation spectroscopy. Nat. Med. 4, 832–834 (1998).

    Article  CAS  Google Scholar 

  25. Ries, J. & Schwille, P. New concepts for fluorescence correlation spectroscopy on membranes. Phys. Chem. Chem. Phys. 10, 3487–3497 (2008).

    Article  CAS  Google Scholar 

  26. Duocastella, M. & Arnold, C. B. Transient response in ultra-high speed liquid lenses. J. Phys. D 46, 075102 (2013).

    Article  CAS  Google Scholar 

  27. Duocastella, M., Vicidomini, G. & Diaspro, A. Simultaneous multiplane confocal microscopy using acoustic tunable lenses. Opt. Express 22, 19293–19301 (2014).

    Article  Google Scholar 

  28. Duocastella, M., Sun, B. & Arnold, C. B. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. J. Biomed. Opt. 17, 050505 (2012).

    Article  Google Scholar 

  29. Mermillod-Blondin, A., McLeod, E. & Arnold, C. B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. Opt. Lett. 33, 2146–2148 (2008).

    Article  Google Scholar 

  30. Taratuta, V. G., Holschbach, A., Thurston, G. M., Blankschtein, D. & Benedek, G. B. Liquid–liquid phase separation of aqueous lysozyme solutions: effects of pH and salt identity. J. Phys. Chem. 94, 2140–2144 (1990).

    Article  CAS  Google Scholar 

  31. Broide, M. L., Berland, C. R., Pande, J., Ogun, O. O. & Benedek, GB. Binary-liquid phase separation of lens protein solutions. Proc. Natl Acad. Sci. USA 88, 5660–5664 (1991).

    Article  CAS  Google Scholar 

  32. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

    Google Scholar 

  33. Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440–440 (1941).

    Article  CAS  Google Scholar 

  34. Flory, P. I. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article  CAS  Google Scholar 

  35. Harding, S. E. & Johnson, P. The concentration-dependence of macromolecular parameters. Biochem. J. 231, 543–547 (1985).

    Article  CAS  Google Scholar 

  36. Tirado-Miranda, M., Haro-Perez, C., Quesada-Perez, M., Callejas-Fernandez, J. & Hidalgo-Alvarez, R. Effective charges of colloidal particles obtained from collective diffusion experiments. J. Colloid. Interface Sci. 263, 74–79 (2003).

    Article  CAS  Google Scholar 

  37. Simon, J. R., Carroll, N. J., Rubinstein, M., Chilkoti, A. & López, G. P. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9, 509–515 (2017).

    Google Scholar 

  38. Muthukumar, M. Thermodynamics of polymer solutions. J. Chem. Phys. 85, 4722–4728 (1986).

    Article  CAS  Google Scholar 

  39. Cai, L.-H., Panyukov, S. & Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 44, 7853–7863 (2011).

    Article  CAS  Google Scholar 

  40. Updike, D. L., Hachey, S. J., Kreher, J . & Strome, S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192, 939–948 (2011).

    Article  CAS  Google Scholar 

  41. Handwerger, K. E., Cordero, J. A. & Gall, J. G. Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol. Biol. Cell 16, 202–211 (2005).

    Article  CAS  Google Scholar 

  42. Updike, D. & Strome, S. P granule assembly and function in Caenorhabditis elegans germ cells. J. Androl. 31, 53–60 (2010).

    Article  CAS  Google Scholar 

  43. Frey, S. & Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130, 512–523 (2007).

    Article  CAS  Google Scholar 

  44. Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016).

    Article  CAS  Google Scholar 

  45. Skinner, J. P., Chen, Y. & Muller, J. D. Position-sensitive scanning fluorescence correlation spectroscopy. Biophys. J. 89, 1288–1301 (2005).

    Article  CAS  Google Scholar 

  46. Vitalis, A. & Pappu, R. V. Absinth: a new continuum solvation model for simulations of polypeptides in aqueous solutions. J. Comput. Chem. 30, 673–699 (2009).

    Article  CAS  Google Scholar 

  47. Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Zhang and D. M. Mitrea for purifying WHI3 and NPM1, respectively. We acknowledge funding from the Princeton Center for Complex Materials, an MRSEC supported by NSF grant DMR 1420541, and the Eric and Wendy Schmidt Transformative Technology Fund. This work was also supported by an NIH Director's New Innovator Award (1DP2GM105437-01 to C.P.B.), an NSF CAREER award (1253035 to C.P.B.), NIH grants (1K99NS096217-01 to S.E.G. and 5RO1NS056114 to R.V.P.), and an HFSP Program grant (RGP0007/2012 to C.P.B.). A.S.H. is a Bonnie and Kent Lattig graduate fellow in the Center for Biological Systems Engineering at Washington University in Saint Louis. We thank C. Theriault from TAG Optics for providing the TAG lens used in this study.

Author information

Authors and Affiliations

Authors

Contributions

M.W. acquired and analysed data in usFCS development and nano-scale rheology. S.E.G. acquired and analysed data in particle tracking microrheology, FCS and dextran permeability. A.S.H. performed computational simulations and theoretical analysis. C.C.C. created in vivo LAF-1 constructs and injected dextran molecules into C. elegans. M.F. created in vivo NPM1/FIB-1 constructs and injected dextran molecules into X. laevis. M.W., C.B.A., C.P.B. and R.D.P. designed the usFCS measurements. A.S.H. and R.V.P. designed the theoretical analysis with input from M.W., S.E.G. and C.P.B.; M.W., S.E.G. A.S.H., R.V.P. and C.P.B. wrote the paper.

Corresponding authors

Correspondence to Rohit V. Pappu or Clifford P. Brangwynne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, MT., Elbaum-Garfinkle, S., Holehouse, A. et al. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nature Chem 9, 1118–1125 (2017). https://doi.org/10.1038/nchem.2803

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing