Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes

Abstract

Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric ‘bacteria sequestrants’, designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quorum sensing induction in the AI-2 network.
Figure 2: Effect of polymers on V. harveyi MM32 behaviour.
Figure 3: Effect of relative binding affinities on light production.
Figure 4: Effect of polymers on V. harveyi BB170 luminescence.

Similar content being viewed by others

References

  1. Clatworthy, A. E., Pierson, E. & Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nature Chem. Biol. 3, 541–548 (2007).

    Article  CAS  Google Scholar 

  2. Nathan, C. Fresh approaches to anti-infective therapies. Sci. Transl. Med. 4, 140sr2 (2012).

    Article  Google Scholar 

  3. Hancock, R. E. W., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nature Rev. Microbiol. 10, 243–254 (2012).

    Article  CAS  Google Scholar 

  4. Wei, P. et al. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 488, 384–388 (2012).

    Article  CAS  Google Scholar 

  5. Klemm, P., Vejborg, R. M. & Hancock, V. Prevention of bacterial adhesion. Appl. Microb. Biotechnol. 88, 451–459 (2010).

    Article  CAS  Google Scholar 

  6. Bricarello, D. A., Patel, M. A. & Parikh, A. N. Inhibiting host–pathogen interactions using membrane-based nanostructures. Trends Biotechnol. 30, 323–330 (2012).

    Article  CAS  Google Scholar 

  7. Kaufmann, G. F., Park, J. & Janda, K. D. Bacterial quorum sensing: a new target for anti-infective immunotherapy. Exp. Opin. Biol. Ther. 8, 719–724 (2008).

    Article  CAS  Google Scholar 

  8. Park, J. et al. Infection control by antibody disruption of bacterial quorum sensing signaling. Chem. Biol. 14, 1119–1127 (2007).

    Article  CAS  Google Scholar 

  9. Hancock, R. E. W. & Sahl, H.-G. Antimicrobial and host–defense peptides as new anti-infective therapeutic strategies. Nature Biotechnol. 24, 1551–1557 (2006).

    Article  CAS  Google Scholar 

  10. Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chem. 3, 409–414 (2011).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nature Nanotech. 4, 457–463 (2009).

    Article  CAS  Google Scholar 

  12. Alexander, C., Pasparakis, G. & Cockayne, A. Control of bacterial aggregation by thermoresponsive glycopolymers. J. Am. Chem.Soc. 129, 11014–11015 (2007).

    Article  Google Scholar 

  13. Shepherd, J. et al. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin. Biomaterials 32, 258–267 (2011).

    Article  CAS  Google Scholar 

  14. Lee, D-W., Kim, T., Park, I-S., Huang, Z. & Lee, M. Multivalent nanofibers of a controlled length: regulation of bacterial cell agglutination. J. Am. Chem. Soc 134, 14722–14725 (2012).

    Article  CAS  Google Scholar 

  15. Rai, P. et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nature Biotechnol. 24, 582–586 (2006).

    Article  CAS  Google Scholar 

  16. Piletska, E. V. et al. Attenuation of Vibrio fischeri quorum sensing using rationally designed polymers. Biomacromolecules 11, 975–980 (2010).

    Article  CAS  Google Scholar 

  17. Bush, K. et al. Tackling antibiotic resistance. Nature Rev. Microbiol. 9, 894–896 (2011).

    Article  CAS  Google Scholar 

  18. Garner, A. L. et al. A multivalent probe for AI-2 quorum-sensing receptors. J. Am. Chem. Soc. 133, 15934–15937 (2011).

    Article  CAS  Google Scholar 

  19. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    Article  CAS  Google Scholar 

  20. Hook, A. L. et al. Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnol. 30, 868–875 (2012).

    Article  CAS  Google Scholar 

  21. Smith, R. S. et al. Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Sci. Transl. Med. 4, 153ra132 (2012).

    PubMed  Google Scholar 

  22. Epstein, A. K., Wong, T.-S., Belisle, R. A., Boggs, E. M. & Aizenberg, J. Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl Acad. Sci. USA 109, 13182–13187 (2012).

    Article  CAS  Google Scholar 

  23. Kastrup, C. J. et al. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting’. Nature Chem. Biol 4, 742–750 (2008).

    Article  CAS  Google Scholar 

  24. Carnes, E. C. et al. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chem. Biol. 6, 41–45 (2010).

    Article  CAS  Google Scholar 

  25. Alberghini, S. et al. Consequences of relative cellular positioning on quorum sensing and bacterial cell-to-cell communication. FEMS Microbiol. Lett. 292, 149–161 (2009).

    Article  CAS  Google Scholar 

  26. Goryachev, A. B. Understanding bacterial cell–cell communication with computational modeling. Chem. Rev. 111, 238–250 (2011).

    Article  CAS  Google Scholar 

  27. Flickinger, S. T. et al. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. J. Am. Chem. Soc. 133, 5966–5975 (2011).

    Article  CAS  Google Scholar 

  28. Boedicker, J. Q., Vincent, M. E. & Ismagilov, R. F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angew. Chem. Int. Ed. 48, 5908–5911 (2009).

    Article  CAS  Google Scholar 

  29. Lowery, C. A., Dickerson, T. J. & Janda, K. D. Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem. Soc. Rev. 37, 1337–1346 (2008).

    Article  CAS  Google Scholar 

  30. Atkinson, S. & Williams, P. Quorum sensing and social networking in the microbial world. J. R. Soc. Interface 6, 959–978 (2009).

    Article  CAS  Google Scholar 

  31. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    Article  CAS  Google Scholar 

  32. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  Google Scholar 

  33. Williams, P. Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153, 3923–3938 (2007).

    Article  CAS  Google Scholar 

  34. Williams, P., Winzer, K., Chan, W. C. & Camara, M. Look who's talking: communication and quorum sensing in the bacterial world. Phil. Trans. R. Soc. B 362, 1119–1134 (2007).

    Article  CAS  Google Scholar 

  35. Antunes, L. C. M. & Ferreira, R. B. R. Intercellular communication in bacteria. Crit. Rev. Microbiol. 35, 69–80 (2009).

    Article  CAS  Google Scholar 

  36. Fuqua, C. & Greenberg, E. P. Listening in on bacteria: acyl-homoserine lactone signaling. Nature Rev. Mol. Cell Biol. 3, 685–695 (2002).

    Article  CAS  Google Scholar 

  37. Redfield, R. J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  Google Scholar 

  38. Federle, M. J. & Bassler, B. L. Interspecies communication in bacteria. J. Clin. Invest. 112, 1291–1299 (2003).

    Article  CAS  Google Scholar 

  39. Xue, X. et al. Synthetic polymers for simultaneous bacterial sequestration and quorum sense interference. Angew. Chem. Int. Ed. 50, 9852–9856 (2011).

    Article  CAS  Google Scholar 

  40. Barnard, A. M. L. et al. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Phil. Trans. R. Soc. B 362, 1165–1183 (2007).

    Article  CAS  Google Scholar 

  41. Fineran, P. C., Slater, H., Everson, L., Hughes, K. & Salmond, G. P. C. Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol. Microbiol. 56, 1495–1517 (2005).

    Article  CAS  Google Scholar 

  42. Kenawy, E.-R., Worley, S. D. & Broughton, R. The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8, 1359–1384 (2007).

    Article  CAS  Google Scholar 

  43. Engler, A. C. et al. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today 7, 201–222 (2012).

    Article  CAS  Google Scholar 

  44. Winson, M. K. et al. Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol. Lett. 163, 185–192 (1998).

    Article  CAS  Google Scholar 

  45. Swift, S. et al. Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J. Bacteriol. 179, 5271–5281 (1997).

    Article  CAS  Google Scholar 

  46. Pearson, J. P. et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA 91, 197–201 (1994).

    Article  CAS  Google Scholar 

  47. Winson, M. K. et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 9427–9431 (1995).

    Article  CAS  Google Scholar 

  48. Diggle, S. P. et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem. Biol. 14, 87–96 (2007).

    Article  CAS  Google Scholar 

  49. Pesci, E. C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 11229–11234 (1999).

    Article  CAS  Google Scholar 

  50. Krasnogor, N. et al. An appealing computational mechanism drawn from bacterial quorum sensing. Bull. Eur. Assoc. Theor. Comput. Sci. 85, 135–148 (2005).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the UK Engineering and Physical Sciences Research Council and Biotechnology and Biological Sciences Research Council (grants EP/G042462/1, EP/H005625/1, EP/D022347/1, EP/D021847/1, EP/I031642/1, EP/J004111/1 and BB/F01855X/1) and the University of Nottingham for funding. The authors thank B. Bassler (Department of Molecular Biology, Princeton University) for the gift of V. harveyi and P. Williams and S. Diggle (University of Nottingham) for the gift of E. coli and P. aeruginosa strains. The authors also thank colleagues at SynBioNT (www.synbiont.net) for helpful discussions, and in particular B. Davis and L. Cronin for their advice and suggestions in the wider SynBioNT collaboration.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments, analysed the data and discussed the results. N.K. and C.A. secured funding, X.X., C.S., A.B., L.L. and F.F-T performed the experiments and L.L., F.F-T., N.K. and C.A. co-wrote the manuscript.

Corresponding authors

Correspondence to Francisco Fernandez-Trillo, Natalio Krasnogor or Cameron Alexander.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, L., Xue, X., Sui, C. et al. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nature Chem 5, 1058–1065 (2013). https://doi.org/10.1038/nchem.1793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing