Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes

Abstract

Frustrated Lewis pairs are compounds containing both Lewis acidic and Lewis basic moieties, where the formation of an adduct is prevented by steric hindrance. They are therefore highly reactive, and have been shown to be capable of heterolysis of molecular hydrogen, a property that has led to their use in hydrogenation reactions of polarized multiple bonds. Here, we describe a general approach to the hydrogenation of alkynes to cis-alkenes under mild conditions using the unique ansa-aminohydroborane as a catalyst. Our approach combines several reactions as the elementary steps of the catalytic cycle: hydroboration (substrate binding), heterolytic hydrogen splitting (typical frustrated-Lewis-pair reactivity) and facile intramolecular protodeborylation (product release). The mechanism is verified by experimental and computational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FLP-catalysed hydrogenation of multiple C–C bonds.
Figure 2: Mechanism of catalytic hydrogenation of alkynes into cis-alkenes.
Figure 3: Solution-phase Gibbs free energy diagram computed for the hydrogenation of but-2-yne (10a).
Figure 4: Reaction of 6 and 8 with alkenes.
Figure 5: Reaction of aminoborane 6 with hex-1-yne and H2.

Similar content being viewed by others

References

  1. Welch, G. C., San Juan, R. R., Masuda, J. D. & Stephan, D. W. Reversible, metal-free hydrogen activation. Science 314, 1124–1126 (2006).

    CAS  PubMed  Google Scholar 

  2. Stephan, D. W. ‘Frustrated Lewis pairs’: a concept for new reactivity and catalysis. Org. Biomol. Chem. 6, 1535–1539 (2008).

    CAS  PubMed  Google Scholar 

  3. Stephan, D. W. & Erker, G. Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew. Chem. Int. Ed. 49, 46–76 (2010).

    CAS  Google Scholar 

  4. Stephan, D. W. et al. Metal-free catalytic hydrogenation of polar substrates by frustrated Lewis pairs. Inorg. Chem. 50, 12338–12348 (2011).

    CAS  PubMed  Google Scholar 

  5. Stephan, D. W. ‘Frustrated Lewis pair’ hydrogenations. Org. Biomol. Chem. 10, 5740–5746 (2012).

    CAS  PubMed  Google Scholar 

  6. Sumerin, V. et al. Highly active metal-free catalysts for hydrogenation of unsaturated nitrogen-containing compounds. Adv. Synth. Catal. 353, 2093–2110 (2011).

    CAS  Google Scholar 

  7. Eros, G. et al. Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design. Angew. Chem. Int. Ed. 49, 6559–6563 (2010).

    CAS  Google Scholar 

  8. Xu, B-H. et al. Reaction of frustrated Lewis pairs with conjugated ynones-selective hydrogenation of the carbon–carbon triple bond. Angew. Chem. Int. Ed. 50, 7183–7186 (2011).

    CAS  Google Scholar 

  9. Mahdi, T., Heiden, Z. M., Grimme, S. & Stephan, D. W. Metal-free aromatic hydrogenation: aniline to cyclohexyl-amine derivatives. J. Am. Chem. Soc. 134, 4088–4091 (2012).

    CAS  PubMed  Google Scholar 

  10. Greb, L. et al. Metal-free catalytic olefin hydrogenation: low-temperature H2 activation by frustrated Lewis pairs. Angew. Chem. In. Ed. 51, 10164–10168 (2012).

    CAS  Google Scholar 

  11. Köster, R. Neue präparative Möglichkeiten in der Bor- und Silicium-Chemie. Angew. Chem. 68, 383 (1956).

    Google Scholar 

  12. Köster, R., Bruno, G. & Binger, P. Borverbindungen, V Hydrierung von Bortrialkylen und -triarylen. Justus Liebigs Ann. Chem. 644, 1–22 (1961).

    Google Scholar 

  13. DeWitt, E. J., Ramp, F. L. & Trapasso, L. E. Homogeneous hydrogenation catalyzed by boranes. J. Am. Chem. Soc. 83, 4672 (1961).

    CAS  Google Scholar 

  14. Ramp, F. L., DeWitt, E. J. & Trapasso, L. E. Homogeneous hydrogenation catalyzed by boranes. J. Org. Chem. 27, 4368–4372 (1962).

    CAS  Google Scholar 

  15. Yalpani, M. & Köster, R. Partial hydrogenation: from anthracene to coronene. Chem. Ber. 123, 719–724 (1990).

    CAS  Google Scholar 

  16. Köster, R., Schüßler, W. & Yalpani, M. Reduktion kondensierter Arene mitBH-Boranen, I Reaktionen von Naphthalin, Anthracen und Phenanthren mit Tetraalkyldiboranen (6). Chem. Ber. 122, 677–686 (1989).

    Google Scholar 

  17. Yalpani, M., Lunow, T. & Köster, R. Reduction of polycyclic arenes by-boranes, II. Borane catalyzed hydrogenation of naphthalenes to tetralins. Chem. Ber. 122, 687–693 (1989).

    CAS  Google Scholar 

  18. Haenel, M. W., Narangerel, J., Richter, U-B. & Rufińska, A. The first liquefaction of high-rank bituminous coals by preceding hydrogenation with homogeneous borane or iodine catalysts. Angew. Chem. 45, 1061–1066 (2006).

    CAS  Google Scholar 

  19. Siau, W-Y., Zhang, Y. & Zhao, Y. Stereoselective synthesis of Z-alkenes. Top. Curr. Chem. 327, 33–58 (2012).

    CAS  PubMed  Google Scholar 

  20. Jain, S. C. et al. Polyene pheromone components from an arctiid moth (Utetheisa ornatrix): characterization and synthesis. J. Org. Chem. 48, 2266–2270 (1983).

    CAS  Google Scholar 

  21. Fürstner, A., Guth, O., Rumbo, A. & Seidel, G. Ring closing alkyne metathesis. Comparative investigation of two different catalyst systems and application to the stereoselective synthesis of olfactory lactones, azamacrolides, and the macrocyclic perimeter of the marine alkaloid nakadomarin A. J. Am. Chem. Soc. 121, 11108–11113 (1999).

    Google Scholar 

  22. Ghosh, A. K., Wang, Y. & Kim, J. T. Total synthesis of microtubule-stabilizing agent (−)-laulimalide. J. Org. Chem. 66, 8973–8982 (2001).

    CAS  PubMed  Google Scholar 

  23. Fürstner, A. & Davies, P. W. Alkyne metathesis. Chem. Commun. 2307–2320 (2005).

  24. Caggiano, T. J., Siegel, S., King, A. O. & Shinkai, I. Encyclopedia of Reagents for Organic Synthesis Vol. 6 (ed. Paquette, L. A.) 3694–3869; 3861–3865; 3966–3867 (Wiley, 1995).

    Google Scholar 

  25. Schrock, R. R. & Osborn, J. A. Catalytic hydrogenation using cationic rhodium complexes. II. The selective hydrogenation of alkynes to cis olefins. J. Am. Chem. Soc. 98, 2143–2147 (1976).

    CAS  Google Scholar 

  26. Sodeoka, M. & Shibasaki, M. New functions of (arene)tricarbonylchromium(0) complexes as hydrogenation catalysts: stereospecific semihydrogenation of alkynes and highly chemoselective hydrogenation of αβ-unsaturated carbonyl compounds. J. Org. Chem. 50, 1147–1149 (1985).

    CAS  Google Scholar 

  27. Van Laren, M. W. & Elsevier, C. J. Selective homogeneous palladium(0)-catalyzed hydrogenation of alkynes to (Z)-alkenes. Angew. Chem. Int. Ed. 38, 3715–3717 (1999).

    CAS  Google Scholar 

  28. Radkowski, K., Sundararaju, B. & Fürstner, A. A functional-group-tolerant catalytic trans hydrogenation of alkynes. Angew. Chem. Int. Ed. 52, 355–360 (2013).

    CAS  Google Scholar 

  29. Parks, D. J., von H. Spence, R. E. & Piers, W. E. Bis(pentafluorophenyl)borane: synthesis, properties, and hydroboration chemistry of a highly electrophilic borane reagent. Angew. Chem. Int. Ed. 34, 809–811 (1995).

    CAS  Google Scholar 

  30. Parks, D. J., Piers, W. E. & Yap, G. P. A. Synthesis, properties, and hydroboration activity of the highly electrophilic borane bis(pentafluorophenyl)borane, HB(C6F5)2 . Organometallics 17, 5492–5503 (1998).

    CAS  Google Scholar 

  31. Parks, D. & Piers, W. Hydroboration of vinyl silanes with bis-(pentafluoro phenyl)borane: ground state β-silicon effects. Tetrahedron 54, 15469–15488 (1998).

    CAS  Google Scholar 

  32. Jiang, C., Blacque, O. & Berke, H. Metal-free hydrogen activation by the frustrated Lewis pairs of ClB(C6F5)2 and HB(C6F5)2 and bulky Lewis bases. Organometallics 28, 5233–5239 (2009).

    CAS  Google Scholar 

  33. Jiang, C., Blacque, O., Fox, T. & Berke, H. Reversible, metal-free hydrogen activation by frustrated Lewis pairs. Dalton Trans. 40, 1091–1097 (2011).

    PubMed  Google Scholar 

  34. Chernichenko, K., Nieger, M., Leskelä, M. & Repo, T. Hydrogen activation by 2-boryl-N,N-dialkylanilines: a revision of Piers' ansa-aminoborane. Dalton Trans. 41, 9029–9032 (2012).

    CAS  PubMed  Google Scholar 

  35. Chase, P. A. & Stephan, D. W. Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3 . Angew. Chem. Int. Ed. 47, 7433–7437 (2008).

    CAS  Google Scholar 

  36. Robertson, A. P. M. et al. Experimental and theoretical studies of the potential interconversion of the amine-borane iPr2NH·BH(C6F5)2 and the aminoborane iPr2N=B(C6F5)2 involving hydrogen loss and uptake. Eur. J. Inorg. Chem. 2011, 5279–5287 (2011).

    CAS  Google Scholar 

  37. Erdmann, M. et al. Functional group chemistry at intramolecular frustrated Lewis pairs: substituent exchange at the Lewis acid site with 9-BBN. Dalton Trans. 42, 709–718, (2013).

    CAS  PubMed  Google Scholar 

  38. Brown, H. C. Hydroboration (W. A. Benjamin, 1962).

    Google Scholar 

  39. Rokob, T. A., Hamza, A. & Pápai, I. Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid–base properties. J. Am. Chem. Soc. 131, 10701–10710 (2009).

    CAS  PubMed  Google Scholar 

  40. Dureen, M. A., Brown, C. C. & Stephan, D. W. Deprotonation and addition reactions of frustrated Lewis pairs with alkynes. Organometallics 29, 6594–6607 (2010).

    CAS  Google Scholar 

  41. Dureen, M. A. & Stephan, D. W. Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. J. Am. Chem. Soc. 131, 8396–8397 (2009).

    CAS  PubMed  Google Scholar 

  42. Jiang, C., Blacque, O. & Berke, H. Activation of terminal alkynes by frustrated Lewis pairs. Organometallics 29, 125–133 (2010).

    CAS  Google Scholar 

  43. Moemming, C. M. et al. Formation of cyclic allenes and cumulenes by cooperative addition of frustrated Lewis pairs to conjugated enynes and diynes. Angew. Chem. Int. Ed. 49, 2414–2417 (2010).

    CAS  Google Scholar 

  44. Voss, T. et al. Frustrated Lewis pair behavior of intermolecular amine/B(C6F5)3 pairs. Organometallics 31, 2367–2378 (2012).

    CAS  Google Scholar 

  45. Winkelhaus, D., Neumann, B., Stammler, H-G. & Mitzel, N. W. Intramolecular Lewis acid–base pairs based on 4-ethynyl-2,6-lutidine. Dalton Trans. 41, 9143–9150 (2012).

    CAS  PubMed  Google Scholar 

  46. Sumerin, V. et al. Amine-borane mediated metal-free hydrogen activation and catalytic hydrogenation. Top. Curr. Chem. 332, 111–155 (2013).

    CAS  PubMed  Google Scholar 

  47. Chai, J-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Academy of Finland (139550) and the Hungarian Research Foundation (OTKA, grant K-81927) and COST action CM0905 (Organocatalysis). The authors also thank A. Reznichenko for discussions and corrections during the preparation of the manuscript, M. Lindqvist for corrections and S. Heikkinen for help with NMR measurements.

Author information

Authors and Affiliations

Authors

Contributions

K.C. and T.R. conceived and K.C. carried out the experiments. A.M. and I.P. designed and performed the DFT studies. All authors discussed and co-wrote the paper.

Corresponding authors

Correspondence to Imre Pápai or Timo Repo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernichenko, K., Madarász, Á., Pápai, I. et al. A frustrated-Lewis-pair approach to catalytic reduction of alkynes to cis-alkenes. Nature Chem 5, 718–723 (2013). https://doi.org/10.1038/nchem.1693

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing