Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy

Abstract

The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution, four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo (bio)chemical transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-nanoparticle 4D-EM.
Figure 2: Structure, spin crossover and dynamics of Fe(pyrazine)Pt(CN)4 nanoparticles.
Figure 3: Equilibrium phase-transition behaviour.
Figure 4: Single-nanoparticle morphology dynamics.
Figure 5: Real- and reciprocal–space time profiles.
Figure 6: Particle-dependent dynamics.

Similar content being viewed by others

References

  1. Thomas, J. M. & Midgley, P. A. The modern electron microscope: a cornucopia of chemico-physical insights. Chem. Phys. 385, 1–10 (2011).

    Article  CAS  Google Scholar 

  2. Meyer, R. R. et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324–1326 (2000).

    Article  CAS  Google Scholar 

  3. Thomas, J. M., Simpson, E. T., Kasama, T. & Dunin-Borkowski, R. E. Electron holography for the study of magnetic nanomaterials. Acc. Chem. Res. 41, 665–674 (2008).

    Article  CAS  Google Scholar 

  4. Hofmann, S. et al. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Mater. 7, 372–375 (2008).

    Article  CAS  Google Scholar 

  5. Hofmann, S. et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett. 7, 602–608 (2007).

    Article  CAS  Google Scholar 

  6. Stach, E. A. et al. Watching GaN nanowires grow. Nano Lett. 3, 867–869 (2003).

    Article  CAS  Google Scholar 

  7. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nature Commun. 3, 732 (2012).

    Article  Google Scholar 

  8. Shan, Z. et al. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654–657 (2004).

    Article  CAS  Google Scholar 

  9. Gao, P. et al. Revealing the role of defects in ferroelectric switching with atomic resolution. Nature Commun. 2, 591 (2011).

    Article  Google Scholar 

  10. Zheng, H. et al. Observation of transient structural-transformation dynamics in a Cu2S nanorod. Science 333, 206–209 (2011).

    Article  CAS  Google Scholar 

  11. Alloyeau, D. et al. Size and shape effects on the order–disorder phase transition in CoPt nanoparticles. Nature Mater. 8, 940–946 (2009).

    Article  CAS  Google Scholar 

  12. Schumacher, T. et al. Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle. Nature Commun. 2, 333 (2011).

    Article  Google Scholar 

  13. Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex. Science 323, 489–492 (2009).

    Article  CAS  Google Scholar 

  14. Johnson, S. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    Article  CAS  Google Scholar 

  15. Spence, J. C. H., Weierstall, U. & Chapman, H. N. X-ray lasers for structural and dynamic biology. Rep. Prog. Phys. 75, 102601 (2012).

    Article  CAS  Google Scholar 

  16. Zewail, A. H. Four-dimensional electron microscopy. Science 328, 187–193 (2010).

    Article  CAS  Google Scholar 

  17. Yurtsever, A. & Zewail, A. H. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326, 708–712 (2009).

    Article  CAS  Google Scholar 

  18. Yurtsever, A. & Zewail, A. H. Kikuchi ultrafast nanodiffraction in four-dimensional electron microscopy. Proc. Natl Acad. Sci. USA 208, 3152–3156 (2011).

    Article  Google Scholar 

  19. Ortalan, V. & Zewail, A. H. 4D scanning transmission ultrafast electron microscopy (ST-UEM): single-particle imaging and spectroscopy. J. Am. Chem. Soc. 133, 10732–10735 (2011).

    Article  CAS  Google Scholar 

  20. Niel, V., Martinez-Agudo, J., Munoz, M., Gaspar, A. & Real, J. Cooperative spin crossover behavior in cyanide-bridged Fe(II)–M(II) bimetallic 3D Hofmann-like networks (M = Ni, Pd, and Pt). Inorg. Chem. 40, 3838–3839 (2001).

    Article  CAS  Google Scholar 

  21. Cobo, S., Molnar, G., Real, J. A. & Bousseksou, A. Multilayer sequential assembly of thin films that display room-temperature spin crossover with hysteresis. Angew. Chem. Int. Ed. 45, 5786–5789 (2006).

    Article  CAS  Google Scholar 

  22. Bousseksou, A., Molnar, G., Salmon, L. & Nicolazzi, W. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 40, 3313–3335 (2011).

    Article  CAS  Google Scholar 

  23. Boldog, I. et al. Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew. Chem. Int. Ed. 47, 6433–6437 (2008).

    Article  CAS  Google Scholar 

  24. Volatron, F. et al. Spin-crossover coordination nanoparticles. Inorg. Chem. 47, 6584–6586 (2008).

    Article  CAS  Google Scholar 

  25. Bonhommeau, S. et al. One shot laser pulse induced reversible spin transition in the spin-crossover complex [Fe(C4H4N2]{Pt(CN)4}] at room temperature. Angew. Chem. Int. Ed. 44, 4069–4073 (2005).

    Article  CAS  Google Scholar 

  26. Ohba, M. et al. Bidirectional chemo-switching of spin state in a microporous framework. Angew. Chem. Int. Ed. 48, 4767–4771 (2009).

    Article  CAS  Google Scholar 

  27. Agusti, G. et al. Oxidative addition of halogens on open metal sites in a microporous spin-crossover coordination polymer. Angew. Chem. Int. Ed. 48, 8944–8947 (2009).

    Article  CAS  Google Scholar 

  28. Southon, P. D. et al. Dynamic interplay between spin-crossover and host–guest function in a nanoporous metal–organic framework material. J. Am. Chem. Soc. 131, 10998–11009 (2009).

    Article  CAS  Google Scholar 

  29. Raza, Y. et al. Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. Chem. Comm. 47, 11501–11503 (2011).

    Article  CAS  Google Scholar 

  30. Hauser, A., Jeftic, J., Romstedt, H., Hinek, R. & Spiering, H. Cooperative phenomena and light-induced bistability in iron(II) spin-crossover compounds. Coord. Chem. Rev. 192, 471–491 (1999).

    Article  Google Scholar 

  31. Ohkoshi, S-I., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nature Chem. 3, 564–569 (2011).

    Article  CAS  Google Scholar 

  32. Gutlich, P. & Goodwin, H. A. Spin Crossover in Transition Metal Compounds (Springer, 2004).

    Book  Google Scholar 

  33. Letard, J., Guionneau, P. & Goux-Capes, L. Towards spin crossover applications. Top. Curr. Chem. 235, 221–249 (2004).

    Article  CAS  Google Scholar 

  34. Gawelda, W. et al. Structural determination of a short-lived excited iron(II) complex by picosecond X-ray absorption spectroscopy. Phys. Rev. Lett. 98, 57401 (2007).

    Article  Google Scholar 

  35. Cobo, S. et al. Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of [FeII(pyrazine)(Pt(CN)4)]. J. Am. Chem. Soc. 130, 9019–9024 (2008).

    Article  CAS  Google Scholar 

  36. Gawelda, W. et al. Ultrafast nonadiabatic dynamics of [FeII(bpy)3]2+ in solution. J. Am. Chem. Soc. 129, 8199–8206 (2007).

    Article  CAS  Google Scholar 

  37. Bertoni, R. et al. Femtosecond spin-state photoswitching of molecular nanocrystals evidenced by optical spectroscopy. Angew. Chem. Int. Ed. 51, 7485–7489 (2012).

    Article  CAS  Google Scholar 

  38. Lorenc, M. et al. Successive dynamical steps of photoinduced switching of a molecular Fe(III) spin-crossover material by time-resolved X-ray diffraction. Phys. Rev. Lett. 103, 028301 (2009).

    Article  CAS  Google Scholar 

  39. Tissot, A., Bertoni, R., Collet, E., Toupet, L. & Boillot, M-L. The cooperative spin-state transition of an iron(III) compound [FeIII(3-MeO-SalEen)2]PF6: thermal- vs. ultra-fast photo-switching. J. Mater. Chem. 21, 18347–18353 (2011).

    Article  CAS  Google Scholar 

  40. Felix, G. et al. Surface plasmons reveal spin crossover in nanometric layers. J. Am. Chem. Soc. 133, 15342–15345 (2011).

    Article  CAS  Google Scholar 

  41. El-Sayed, M. A. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326–333 (2004).

    Article  CAS  Google Scholar 

  42. Jimenez, R., Fleming, G., Kumar, P. V. & Maroncelli, M. Femtosecod solvation dynamics of water. Nature 369, 471–473 (1994).

    Article  CAS  Google Scholar 

  43. Arnaud, C. et al. Observation of an asymmetry in the thermal hysteresis loop at the scale of a single spin-crossover particle. Chem. Phys. Lett. 470, 131–135 (2009).

    Article  CAS  Google Scholar 

  44. Berry, R. S. The amazing phases of small systems. C.R. Phys. 3, 319–326 (2002).

    Article  CAS  Google Scholar 

  45. Flannigan, D. J., Park, S. T. & Zewail, A. H. Nanofriction visualized in space and time by 4D electron microscopy. Nano Lett. 10, 4767–4773 (2010).

    Article  CAS  Google Scholar 

  46. Goodwin, A. & Kepert, C. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301 (2005).

    Article  Google Scholar 

  47. Zewail, A. H. & Thomas, J. M. 4D Electron Microscopy: Imaging in Space and Time (World Scientific Publishing, 2010).

Download references

Acknowledgements

This work was supported by the National Science Foundation and the Air Force Office of Scientific Research in the Gordon and Betty Moore Center for Physical Biology at the California Institute of Technology. R.M.V. acknowledges funding from the Swiss National Science Foundation. We thank S. Tae Park for helpful collaboration in the phase-transition simulations, which will be published later in a full report.

Author information

Authors and Affiliations

Authors

Contributions

R.M.V., O.H.K. and A.H.Z. conceived and designed the experiments. R.M.V. and O.H.K. performed the experiments. A.H. and A.M.T. contributed materials and performed sample characterization. R.M.V., O.H.K., A.M.T., A.H. and A.H.Z. discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ahmed H. Zewail.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3270 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 13269 kb)

Supplementary Movie 2

Supplementary Movie 2 (MOV 16128 kb)

Supplementary Movie 3

Supplementary Movie 3 (MOV 11708 kb)

Supplementary Movie 4

Supplementary Movie 4 (MOV 13316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Veen, R., Kwon, OH., Tissot, A. et al. Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nature Chem 5, 395–402 (2013). https://doi.org/10.1038/nchem.1622

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1622

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing