Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex

Abstract

NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst–SAP102–NMDAR complex is an important component of NMDAR trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct interaction between SAP102 PDZ domains and Sec8.
Figure 2: Exocyst, SAP102 and NMDAR form a complex in brain.
Figure 3: Ultrastructure of the Sec6–Sec8 association in neurons.
Figure 4: Effect of transfected Sec8WT or Sec8Δ4 on NMDAR distribution in COS cells.
Figure 6: Association of NR2B and Sec8WT in the endoplasmic reticulum of transfected cells.
Figure 5: Effect of transfected Sec8WT/Sec8Δ4 on NMDAR distribution in heterologous cells.
Figure 7: Effect of Sec8Δ4 on NMDAR distribution in neurons.
Figure 8: The exocyst complex and the delivery of NMDARs to the cell surface.

Similar content being viewed by others

References

  1. Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev. 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  2. Petralia, R.S., Rubio, M.E., Wang, Y.-X. & Wenthold, R.J. in Handbook of Chemical Neuroanatomy, Vol. 18. Glutamate (eds. Ottersen, O.P. & Storm-Mathisen, J.) 145–182 (Elsevier, New York, 2000).

    Google Scholar 

  3. Garner, C.C., Nash, J. & Huganir, R.L. PDZ Domains in synapse assembly and signalling. Trends Cell Biol. 10, 274–280 (2000).

    Article  CAS  Google Scholar 

  4. Scannevin, R.H. & Huganir, R.L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  5. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  Google Scholar 

  6. Tomita, S., Nicoll, R.A. & Bredt, D.S. PDZ protein interactions regulating glutamate receptor function and plasticity. J. Cell Biol. 153, F19–F24 (2001).

    Article  CAS  Google Scholar 

  7. Kittler, J.T. & Moss, S.J. Neurotransmitter receptor trafficking and the regulation of synaptic strength. Traffic 2, 437–448 (2001).

    Article  CAS  Google Scholar 

  8. Standley, S., Roche, K.W., McCallum, J., Sans, N. & Wenthold, R.J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898 (2000).

    Article  CAS  Google Scholar 

  9. Scott, D.B., Blanpied, T.A., Swanson, G.T., Zhang, C. & Ehlers, M.D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21, 3063–3072 (2001).

    Article  CAS  Google Scholar 

  10. Xia, H., Hornby, Z.D. & Malenka, R.C. An ER retention signal explains differences in surface expression of NMDA and AMPA receptor subunits. Neuropharmacology 41, 714–723 (2001).

    Article  CAS  Google Scholar 

  11. Sans, N. et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J. Neurosci. 21, 7506–7516 (2001).

    Article  CAS  Google Scholar 

  12. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  13. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  Google Scholar 

  14. Bowser, R., Muller, H., Govindan, B. & Novick, P. Sec8p and Sec15p are components of a plasma membrane-associated 19. 5S particle that may function downstream of Sec4p to control exocytosis. J. Cell Biol. 118, 1041–1056 (1992).

    Article  CAS  Google Scholar 

  15. Hsu, S.C. et al. The mammalian brain rsec6/8 complex. Neuron 17, 1209–1219 (1996).

    Article  CAS  Google Scholar 

  16. Hsu, S.C., Hazuka, C.D., Foletti, D.L. & Scheller, R.H. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Trends Cell Biol. 9, 150–153 (1999).

    Article  CAS  Google Scholar 

  17. Hazuka, C.D. et al. The sec6/8 complex is located at neurite outgrowth and axonal synapse assembly domains. J. Neurosci. 19, 1324–1334 (1999).

    Article  CAS  Google Scholar 

  18. Yeaman, C., Grindstaff, K.K., Wright, J.R. & Nelson, W.J. Sec6/8 complexes on trans-Golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J. Cell Biol. 155, 593–604 (2001).

    Article  CAS  Google Scholar 

  19. Vega, I.E. & Hsu, S.C. The exocyst associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848 (2001).

    Article  CAS  Google Scholar 

  20. Shin, D.M., Zhao, X.S., Zeng, W., Mozhayeva, M. & Muallem, S. The mammalian Sec6/8 complex interacts with Ca2+ signaling complexes and regulates their activity. J. Cell Biol. 150, 1101–1112 (2000).

    Article  CAS  Google Scholar 

  21. Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol. 12, 247–249 (2002).

    Article  CAS  Google Scholar 

  22. Muller, B.M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  CAS  Google Scholar 

  23. Lau, L.F. et al. Interaction of the N-methyl-D-aspartate receptor complex with a novel synapse-associated protein, SAP102. J. Biol. Chem. 271, 21622–21628 (1996).

    Article  CAS  Google Scholar 

  24. Makino, K. et al. Cloning and characterization of NE-dlg: a novel human homolog of the Drosophila discs large (dlg) tumor suppressor protein interacts with the APC protein. Oncogene 22, 2425–2433 (1997).

    Article  Google Scholar 

  25. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000).

    Article  CAS  Google Scholar 

  26. Kee, Y. et al. Subunit structure of the mammalian exocyst complex. Proc. Natl. Acad. Sci. U.S.A. 94, 14438–14443 (1997).

    Article  CAS  Google Scholar 

  27. Hawkins, L.M., Chazot, P.L. & Stephenson, F.A. Biochemical evidence for the co-association of three N-methyl-D-aspartate (NMDA) R2 subunits in recombinant NMDA receptors. J. Biol. Chem. 274, 27211–27218 (1999).

    Article  CAS  Google Scholar 

  28. McIlhinney, R.A.J. et al. Assembly, intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37, 1355–1367 (1998).

    Article  CAS  Google Scholar 

  29. Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. 15, 7781–7792 (1999).

    Article  Google Scholar 

  30. Cik, M., Chazot, P.L. & Stephenson, F.A. Optimal expression of cloned NMDAR1/NMDAR2A heteromeric glutamate receptors: a biochemical characterization. Biochem. J. 296, 877–883 (1993).

    Article  CAS  Google Scholar 

  31. Losi, G., Prybylowski, K., Fu, Z., Luo, J.H. & Vicini S. Silent synapses in developing cerebellar granule neurons. J. Neurophysiol. 87, 1263–1270 (2002).

    Article  CAS  Google Scholar 

  32. Prybylowski, K. et al. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J. Neurosci. 22, 8902–8910 (2002).

    Article  CAS  Google Scholar 

  33. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  34. Ma, D. & Jan, L.Y. ER transport signals and trafficking of potassium channels and receptors. Curr. Opin. Neurobiol. 12, 287–292 (2002).

    Article  CAS  Google Scholar 

  35. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  36. Hsu, S.C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

    Article  CAS  Google Scholar 

  37. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998).

    Article  CAS  Google Scholar 

  38. Mori, H. et al. Role of the carboxy-terminal region of the GluR epsilon2 subunit in synaptic localization of the NMDA receptor channel. Neuron 21, 571–580 (1998).

    Article  CAS  Google Scholar 

  39. Barria, A. & Malinow, R. Subunit-specific NMDA receptor trafficking to synapses. Neuron 35, 345–353 (2002).

    Article  CAS  Google Scholar 

  40. Tovar, K.R. & Westbrook, G.L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002).

    Article  CAS  Google Scholar 

  41. Rumbaugh, G. & Vicini, S. Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J. Neurosci. 19, 10603–10610 (1999).

    Article  CAS  Google Scholar 

  42. Tovar, K.R. & Westbrook, G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999).

    Article  CAS  Google Scholar 

  43. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  44. Roche, K.W. et al. Molecular determinants of NMDA receptor internalization. Nat. Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  45. Vissel, B., Krupp, J.J., Heinemann, S.F. & Westbrook, G.L. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux. Nat. Neurosci. 4, 587–596 (2001).

    Article  CAS  Google Scholar 

  46. Snyder, E.M., Philpot, B.D., Huber, K.M., Dong, X., Fallon, J.R. & Bear, M.F. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat. Neurosci. 4, 1079–1085 (2001).

    Article  CAS  Google Scholar 

  47. Chazot, P.L. & Stephenson, F.A. Biochemical evidence for the existence of a pool of unassembled C2 exon-containing NR1 subunits of the mammalian forebrain NMDA receptor. J. Neurochem. 68, 507–516 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.C. Garner for providing the SAP102 cDNA, S.C. Hsu for providing the Sec6 and Sec8 cDNAs and the GST–Exo70 and Sec10 constructs, J.H. Luo for the YFP–NR1-1 construct, A. de Blas for the GABAAR anti-α1 antibody and β3 cDNA, F.A. Stephenson for the Myc- and Flag-tagged NR2B constructs and R.L. Huganir for the GRIP antibody. We would also like to thank C.Y. Wang, L. Hawkins, S. Standley and M. Montcouquiol for helpful comments and discussion, P. Wang for excellent technical assistance, and Z. Fu and G. Losi for cerebellar granule cell cultures. Animals were handled in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publication 85–23; NIDCD protocol #1022-01). This work was supported by the National institute of deafness and other communication disorders (NIDCD), Pharmacology research associate (PRAT) Fellowship Program (National institute of general medical sciences (NIGMS), K.P.), and National institute of mental health (NIMH, S.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sans, N., Prybylowski, K., Petralia, R. et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nat Cell Biol 5, 520–530 (2003). https://doi.org/10.1038/ncb990

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing