Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRMP-2 binds to tubulin heterodimers to promote microtubule assembly

Abstract

Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of tubulin as a CRMP-2-interacting protein.
Figure 2: CRMP-2 binds directly to tubulin heterodimers.
Figure 3: Dark-field video microscopy of assembling microtubules in tubulin–CRMP-2 preparations.
Figure 4: CRMP-2 associates with tubulin dimers more efficiently than with microtubules.
Figure 5: CRMP-2 induces neurite formation in N1E-115 cells.
Figure 6: CRMP-2 interacts with soluble tubulin heterodimers in cultured hippocampal neurons.
Figure 7: Overexpression of CRMP-2WT and CRMP-2-Δ323–381 in hippocampal neurons.

Similar content being viewed by others

References

  1. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Goslin, K. & Banker, G. Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Esch, T., Lemmon, V. & Banker, G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 19, 6417–6426 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baas, P. W. Microtubules and axonal growth. Curr. Opin. Cell Biol. 9, 29–36 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Baas, P. W. Microtubules and neuronal polarity: lessons from mitosis. Neuron 22, 23–31 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hirokawa, N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6, 74–81 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Drechsel, D. N. et al. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia, M. L. & Cleveland, D. W. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 13, 41–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Goshima, Y. et al. Collapsin-induced growth-cone collapse mediated by an intracellular protein related to UNC-33. Nature 376, 509–514 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Minturn, J. E. et al. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J. Neurosci. 15, 6757–6766 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaetano, C., Matsuo, T. & Thiele, C. J. Identification and characterization of a retinoic acid-regulated human homologue of the unc-33-like phosphoprotein gene (hUlip) from neuroblastoma cells. J. Biol. Chem. 272, 12195–12201 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Byk, T., Ozon, S. & Sobel, A. The Ulip family phosphoproteins — common and specific properties. Eur. J. Biochem. 254, 14–24 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Inatome, R. et al. Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain. J. Biol. Chem. 275, 27291–27302 (2000).

    CAS  PubMed  Google Scholar 

  14. Hedgecock, E. M. et al. Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol. 111, 158–170 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Arimura, N. et al. Phosphorylation of collapsin response mediator protein-2 by rho-kinase. Evidence for two separate signaling pathways for growth-cone collapse. J. Biol. Chem. 275, 23973–23980 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Inagaki, N. et al. CRMP-2 induces axons in cultured hippocampal neurons. Nature Neurosci. 4, 781–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, L. H. & Strittmatter, S. M. Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J. Neurochem. 69, 2261–2269 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Detrich, H. W. 3rd & Williams, R. C. Reversible dissociation of the αβ dimer of tubulin from bovine brain. Biochemistry 17, 3900–3907 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Luduena, R. F., Shooter, E. M. & Wilson, L. Structure of the tubulin dimer. J. Biol. Chem. 252, 7006–7014 (1977).

    CAS  PubMed  Google Scholar 

  20. Horio, T. & Hotani, H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321, 605–607 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Itoh, T. J. et al. Phosphorylation states of microtubule-associated protein 2 (MAP2) determine the regulatory role of MAP2 in microtubule dynamics. Biochemistry 36, 12574–12582 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Itoh, T. J. & Hotani, H. Microtubule-stabilizing activity of microtubule-associated proteins (MAPs) is due to increase in frequency of rescue in dynamic instability: shortening length decreases with binding of MAPs onto microtubules. Cell Struct. Funct. 19, 279–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Gustke, N. et al. Domains of tau protein and interactions with microtubules. Biochemistry 33, 9511–9522 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Pedrotti, B. & Islam, K. Purified native microtubule associated protein MAP1A: kinetics of microtubule assembly and MAP1A/tubulin stoichiometry. Biochemistry 33, 12463–12470 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Gu, Y. & Ihara, Y. Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J. Biol. Chem. 275, 17917–17920 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Jalink, K. et al. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J. Cell Biol. 126, 801–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Leger, J. G., Brandt, R. & Lee, G. Identification of tau protein regions required for process formation in PC12 cells. J. Cell Sci. 107, 3403–3412 (1994).

    CAS  PubMed  Google Scholar 

  28. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown, A. et al. Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J. Cell Sci. 104, 339–352 (1993).

    CAS  PubMed  Google Scholar 

  30. Black, M. M. et al. Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16, 3601–3619 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, W., Ahmad, F. J. & Baas, P. W. Microtubule fragmentation and partitioning in the axon during collateral branch formation. J. Neurosci. 14, 5872–5884 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gallo, G. & Letourneau, P. C. Different contributions of microtubule dynamics and transport to the growth of axons and collateral sprouts. J. Neurosci. 19, 3860–3873 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, W. & Baas, P. W. Changes in microtubule number and length during axon differentiation. J. Neurosci. 14, 2818–2829 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahmad, F. J. & Baas, P. W. Microtubules released from the neuronal centrosome are transported into the axon. J. Cell Sci. 108, 2761–2769 (1995).

    CAS  PubMed  Google Scholar 

  35. Yu, W., Schwei, M. J. & Baas, P. W. Microtubule transport and assembly during axon growth. J. Cell Biol. 133, 151–157 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Rochlin, M. W., Wickline, K. M. & Bridgman, P. C. Microtubule stability decreases axon elongation but not axoplasm production. J. Neurosci. 16, 3236–3246 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nixon, R. A. The slow axonal transport of cytoskeletal proteins. Curr. Opin. Cell Biol. 10, 87–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Okabe, S. & Hirokawa, N. Axonal transport. Curr. Opin. Cell Biol. 1, 91–97 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Shah, J. V. & Cleveland, D. W. Slow axonal transport: fast motors in the slow lane. Curr. Opin. Cell Biol. 14, 58–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, A., Slaughter, T. & Black, M. M. Newly assembled microtubules are concentrated in the proximal and distal regions of growing axons. J. Cell Biol. 119, 867–882 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, W. & Baas, P. W. The growth of the axon is not dependent upon net microtubule assembly at its distal tip. J. Neurosci. 15, 6827–6833 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanai, Y. & Hirokawa, N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron 14, 421–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Gu, Y., Hamajima, N. & Ihara, Y. Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 39, 4267–4275 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Gu, Y. Ihara, Y. Kanai, N. Hirokawa, N. J. Cowan, E. Mekada, T. Kato and M. Nakafuku for kind gifts of materials. We also thank M. Amano, M. Fukata, S. Taya, Y. Kawano (Nagoya University) and H. Qadota (Nara Institute of Science and Technology) for helpful discussion and for preparing some materials, and T. Ishii and M. Yoshizaki for secretarial and technical assistance. This research was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, the Japan Society for the Promotion of Science Research for the Future and the Human Frontier Science Program. F.Y. is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kozo Kaibuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figure

Figure S1 Direct interaction between CRMP-2 and tubulin heterodimers. (PDF 193 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukata, Y., Itoh, T., Kimura, T. et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4, 583–591 (2002). https://doi.org/10.1038/ncb825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb825

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing