Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

An Erratum to this article was published on 02 May 2013

This article has been updated

Abstract

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-cell gene expression analysis of a core haematopoietic transcriptional regulatory network.
Figure 2: Haematopoietic transcription factors show heterogeneous expression in haematopoietic stem and progenitor cells.
Figure 3: Single-cell gene expression analysis reveals cell-type-specific regulatory states.
Figure 4: Single-cell expression analysis of haematopoietic transcription factors identifies previously unrecognized putative regulatory interactions between key transcription factors.
Figure 5: Direct repression of Gata2 by GFI1 through a distal enhancer element provides a mechanism for negatively correlated expression.
Figure 6: Direct activation of Gfi1b by GATA2 through distal enhancer elements.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 02 April 2013

    In the version of this Article originally published, Fig. 6d was incorrect; the red label should have read GFI1. This has now been corrected in the HTML and PDF versions.

References

  1. Orkin, S. H. & Zon, L. I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  Google Scholar 

  2. Ottersbach, K., Smith, A., Wood, A. & Gottgens, B. Ontogeny of haematopoiesis: recent advances and open questions. Br. J. Haematol. 148, 343–355 (2010).

    Article  Google Scholar 

  3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  Google Scholar 

  4. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  5. Gering, M., Yamada, Y., Rabbitts, T. H. & Patient, R. K. Lmo2 and Scl/Tal1 convert non-axial mesoderm into haemangioblasts which differentiate into endothelial cells in the absence of Gata1. Development 130, 6187–6199 (2003).

    Article  CAS  Google Scholar 

  6. Di Tullio, A. et al. CCAAT/enhancer binding protein alpha (C/EBP(α))-induced transdifferentiation of pre-B cells into macrophages involves no overt retrodifferentiation. Proc. Natl Acad. Sci. USA 108, 17016–17021 (2011).

    Article  CAS  Google Scholar 

  7. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  Google Scholar 

  8. Pimanda, J. E. & Gottgens, B. Gene regulatory networks governing haematopoietic stem cell development and identity. Int. J. Dev. Biol. 54, 1201–1211 (2010).

    Article  CAS  Google Scholar 

  9. Pimanda, J. E. et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc. Natl Acad. Sci. USA 104, 17692–17697 (2007).

    Article  CAS  Google Scholar 

  10. Wilson, N. K., Calero-Nieto, F. J., Ferreira, R. & Gottgens, B. Transcriptional regulation of haematopoietic transcription factors. Stem Cell Res. Ther. 2, 6 (2011).

    Article  CAS  Google Scholar 

  11. Wilson, N. K. et al. Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7, 532–544 (2010).

    Article  CAS  Google Scholar 

  12. Wilson, N. K. et al. The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood 113, 5456–5465 (2009).

    Article  CAS  Google Scholar 

  13. Sieburg, H. B. et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

    Article  CAS  Google Scholar 

  14. Dykstra, B. et al. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1, 218–229 (2007).

    Article  CAS  Google Scholar 

  15. Copley, M. R., Beer, P. A. & Eaves, C. J. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10, 690–697 (2012).

    Article  CAS  Google Scholar 

  16. Ramos, C. A. et al. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells. PLoS Genet. 2, e159 (2006).

    Article  Google Scholar 

  17. Glotzbach, J. P. et al. An information theoretic, microfluidic-based single cell analysis permits identification of subpopulations among putatively homogeneous stem cells. PLoS One 6, e21211 (2011).

    Article  CAS  Google Scholar 

  18. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  Google Scholar 

  19. Citri, A., Pang, Z. P., Sudhof, T. C., Wernig, M. & Malenka, R. C. Comprehensive qPCR profiling of gene expression in single neuronal cells. Nat. Protoc. 7, 118–127 (2012).

    Article  CAS  Google Scholar 

  20. Guo, G. et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18, 675–685 (2010).

    Article  CAS  Google Scholar 

  21. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    Article  CAS  Google Scholar 

  22. Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14, 287–294 (2012).

    Article  CAS  Google Scholar 

  23. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C. & Morrison, S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  24. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  Google Scholar 

  25. Pronk, C. J. et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442 (2007).

    Article  CAS  Google Scholar 

  26. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic commonmyeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  27. Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  28. Katayama, N. et al. Stage-specific expression of c-kit protein by murine hematopoietic progenitors. Blood 82, 2353–2360 (1993).

    CAS  PubMed  Google Scholar 

  29. Donaldson, I. J. et al. Genome-wide identification of cis-regulatory sequences controlling blood and endothelial development. Hum. Mol. Genet. 14, 595–601 (2005).

    Article  CAS  Google Scholar 

  30. Gottgens, B. et al. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J. 21, 3039–3050 (2002).

    Article  CAS  Google Scholar 

  31. Pimanda, J. E. et al. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc. Natl Acad. Sci. USA 104, 840–845 (2007).

    Article  CAS  Google Scholar 

  32. Tanaka, Y. et al. The transcriptional programme controlled by Runx1 during early embryonic blood development. Dev. Biol. 366, 404–419 (2012).

    Article  CAS  Google Scholar 

  33. Wilson, N. K. et al. Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells. Mol. Cell Biol. 30, 3853–3863 (2010).

    Article  CAS  Google Scholar 

  34. Yamamoto, M., Takahashi, S., Onodera, K., Muraosa, Y. & Engel, J. D. Upstream and downstream of erythroid transcription factor GATA-1. Genes Cells 2, 107–115 (1997).

    Article  CAS  Google Scholar 

  35. Mouthon, M. A. et al. Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81, 647–655 (1993).

    CAS  PubMed  Google Scholar 

  36. Orlic, D., Anderson, S., Biesecker, L. G., Sorrentino, B. P. & Bodine, D. M. Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc. Natl Acad. Sci. USA 92, 4601–4605 (1995).

    Article  CAS  Google Scholar 

  37. Doan, L. L. et al. Targeted transcriptional repression of Gfi1 by GFI1 and GFI1B in lymphoid cells. Nucleic Acids Res. 32, 2508–2519 (2004).

    Article  CAS  Google Scholar 

  38. Vassen, L., Okayama, T. & Moroy, T. Gfi1b: green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 109, 2356–2364 (2007).

    Article  CAS  Google Scholar 

  39. Luc, S. et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol. 13, 412–419 (2012).

    Article  CAS  Google Scholar 

  40. Lawrence, N. D. ICML Proceedings of the 23rd International Conference on Machine Learning 513–520 (2006).

    Book  Google Scholar 

  41. Buettner, F. & Theis, F. J. A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics 28, i626–i632 (2012).

    Article  CAS  Google Scholar 

  42. Shivdasani, R. A. & Orkin, S. H. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc. Natl Acad. Sci. USA 92, 8690–8694 (1995).

    Article  CAS  Google Scholar 

  43. Shivdasani, R. A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81, 695–704 (1995).

    Article  CAS  Google Scholar 

  44. Hall, M. A. et al. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc. Natl Acad. Sci. USA 100, 992–997 (2003).

    Article  CAS  Google Scholar 

  45. Huang, Z. et al. GATA-2 reinforces megakaryocyte development in the absence of GATA-1. Mol. Cell Biol. 29, 5168–5180 (2009).

    Article  CAS  Google Scholar 

  46. Ikonomi, P. et al. Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp. Hematol. 28, 1423–1431 (2000).

    Article  CAS  Google Scholar 

  47. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    Article  CAS  Google Scholar 

  48. Schuh, A. H. et al. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol. Cell Biol. 25, 10235–10250 (2005).

    Article  CAS  Google Scholar 

  49. Hamlett, I. et al. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood 112, 2738–2749 (2008).

    Article  CAS  Google Scholar 

  50. Huang, S., Guo, Y. P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007).

    Article  CAS  Google Scholar 

  51. Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  Google Scholar 

  52. Bonadies, N. et al. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia. PLoS One 6, e16330 (2011).

    Article  CAS  Google Scholar 

  53. Khandanpour, C. et al. The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood 120, 4006–4017 (2012).

    Article  CAS  Google Scholar 

  54. Grass, J. A. et al. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol. Cell Biol. 26, 7056–7067 (2006).

    Article  CAS  Google Scholar 

  55. Pinto do, O. P., Kolterud, A. & Carlsson, L. Expression of the LIM-homeobox gene LH2 generates immortalized steel factor-dependent multipotent hematopoietic precursors. EMBO J. 17, 5744–5756 (1998).

    Article  CAS  Google Scholar 

  56. Nardelli, J., Thiesson, D., Fujiwara, Y., Tsai, F. Y. & Orkin, S. H. Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210, 305–321 (1999).

    Article  CAS  Google Scholar 

  57. Bee, T. et al. The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood 113, 5121–5124 (2009).

    Article  CAS  Google Scholar 

  58. Gottgens, B. et al. cis-regulatory remodeling of the SCL locus during vertebrate evolution. Mol. Cell Biol. 30, 5741–5751 (2010).

    Article  CAS  Google Scholar 

  59. Foster, S. D., Oram, S. H., Wilson, N. K. & Gottgens, B. From genes to cells to tissues-modelling the haematopoietic system. Mol. Biosyst. 5, 1413–1420 (2009).

    Article  CAS  Google Scholar 

  60. Narula, J., Smith, A. M., Gottgens, B. & Igoshin, O. A. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput. Biol. 6, e1000771 (2010).

    Article  Google Scholar 

  61. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  Google Scholar 

  62. Tipping, A. J. et al. High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113, 2661–2672 (2009).

    Article  CAS  Google Scholar 

  63. Monteiro, R., Pouget, C. & Patient, R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma. EMBO J. 30, 1093–1103 (2011).

    Article  CAS  Google Scholar 

  64. Hahn, C. N. et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43, 1012–1017 (2011).

    Article  CAS  Google Scholar 

  65. Phelan, J. D. et al. Growth factor independent-1 (Gfi1) is critically required for T-cell acute lymphoblastic leukemia (T-ALL) tumor initiation and maintenance. Blood (ASH Annual Meeting Abstracts) 116, 3156 (2010).

    Google Scholar 

  66. Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    Article  CAS  Google Scholar 

  67. Kim, W. K., Krumpelman, C. & Marcotte, E. M. Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy. Genome Biol. 9 (Suppl. 1), S5 (2008).

    Article  Google Scholar 

  68. Milasevic, P. a. D. & Ducharme, G. R. Uniqueness of the spatial median. Ann. Stat. 15, 1332–1333 (1987).

    Article  Google Scholar 

  69. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  70. Bockamp, E. O. et al. Transcriptional regulation of the stem cell leukemia gene by PU.1 and Elf-1. J. Biol. Chem. 273, 29032–29042 (1998).

    Article  CAS  Google Scholar 

  71. Landry, J. R. et al. Fli1, Elf1, and Ets1 regulate the proximal promoter of the LMO2 gene in endothelial cells. Blood 106, 2680–2687 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. A. Clark for help with FACS sorting. Research in the authors’ laboratory is supported by the Medical Research Council, Leukaemia and Lymphoma Research, The Leukaemia and Lymphoma Society, Cancer Research UK, and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust–MRC Cambridge Stem Cell Institute.

Author information

Authors and Affiliations

Authors

Contributions

V.M. designed and performed single-cell experiments, performed analysis and wrote the paper. B.G. conceived the study, designed experiments and wrote the paper. I.C.M. and S.E.J. designed and performed FACS and wrote the paper. F.B. and F.T. analysed GPLVM data and wrote the paper. S.K. and J.S. performed transgenic and luciferase analysis. A.J. and R.H. performed bioinformatic analysis. F.J.C-N. performed ChIP-seq experiments. G.S. and M.F.d.B. designed experiments and performed preliminary studies.

Corresponding author

Correspondence to Berthold Göttgens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1470 kb)

Supplementary Table 1

Supplementary Information (XLSX 41 kb)

Supplementary Table 2

Supplementary Information (XLSX 31 kb)

Supplementary Table 3

Supplementary Information (XLSX 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moignard, V., Macaulay, I., Swiers, G. et al. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15, 363–372 (2013). https://doi.org/10.1038/ncb2709

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2709

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing