Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity

Abstract

Apically enriched Rab11-positive recycling endosomes (Rab11-REs) are important for establishing and maintaining epithelial polarity. Yet, little is known about the molecules controlling trafficking of Rab11-REs in an epithelium in vivo. Here, we report a genome-wide, image-based RNA interference screen for regulators of Rab11-RE positioning and transport of an apical membrane protein (PEPT-1) in C. elegans intestine. Among the 356 screen hits was the 14-3-3 and partitioning defective protein PAR-5, which we found to be specifically required for Rab11-RE positioning and apicobasal polarity maintenance. Depletion of PAR-5 induced abnormal clustering of Rab11-REs to ectopic sites at the basolateral cortex containing F-actin and other apical domain components. This phenotype required key regulators of F-actin dynamics and polarity, such as Rho GTPases (RHO-1 and the Rac1 orthologue CED-10) and apical PAR proteins. Our data suggest that PAR-5 acts as a regulatory hub for a polarity-maintaining network required for apicobasal asymmetry of F-actin and proper Rab11-RE positioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo readout assay, semi-automated workflow and image analysis of the primary high-content screen.
Figure 2: Phenotypic profiling and biological functions of identified genes.
Figure 3: Comparative secondary assays reveal functional roles for candidate genes.
Figure 4: PAR-5 depletion causes RAB-11-REs to cluster around ectopic F-actin at the basolateral cortex.
Figure 5: RAB-11-REs cluster at ectopic sites at the basolateral cortex that are enriched for various apical domain components.
Figure 6: Formation of peripheral GFP::RAB-11-RE clusters and ectopic F-actin patches on depletion of PAR-5 depends on both Rho GTPases and apical PAR proteins.
Figure 7: Functional PAR-5 model.

Similar content being viewed by others

References

  1. Apodaca, G. Endocytic traffic in polarized epithelial cells: role of the actin and microtubule cytoskeleton. Traffic 2, 149–159 (2001).

    CAS  PubMed  Google Scholar 

  2. Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9, 846–859 (2008).

    CAS  PubMed  Google Scholar 

  3. Knust, E. & Bossinger, O. Composition and formation of intercellular junctions in epithelial cells. Science 298, 1955–1959 (2002).

    CAS  PubMed  Google Scholar 

  4. Goldenring, J. R. et al. Rab11 is an apically located small GTP-binding protein in epithelial tissues. Am. J. Physiol. 270, G515–G525 (1996).

    CAS  PubMed  Google Scholar 

  5. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    CAS  PubMed  Google Scholar 

  6. Mellman, I. & Nelson, W. J. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9, 833–845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, A. & Ohno, S. The PAR–aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Munro, E. PAR proteins and the cytoskeleton: a marriage of equals. Curr. Opinion Cell Biol. 18, 86–94 (2006).

    CAS  PubMed  Google Scholar 

  10. Nance, J. & Zallen, J. A. Elaborating polarity: PAR proteins and the cytoskeleton. Development 138, 799–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Achilleos, A., Wehman, A. M. & Nance, J. PAR-3 mediates the initial clustering and apical localization of junction and polarity proteins during C. elegans intestinal epithelial cell polarization. Development 137, 1833–1842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Totong, R., Achilleos, A. & Nance, J. PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development 134, 1259–1268 (2007).

    CAS  PubMed  Google Scholar 

  13. Daley, W. P. et al. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity. Development 139, 411–422 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    CAS  PubMed  Google Scholar 

  15. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117 (2001).

    CAS  PubMed  Google Scholar 

  16. Lundquist, E. A. Small GTPases (January 17, 2006), WormBook, ed. The C. elegans Research Community, WormBook,http://dx.doi.org/10.1895/wormbook.1.67.1,http://www.wormbook.org.

  17. Golachowska, M. R., Hoekstra, D. & van, I. S. C. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol. 20, 618–626 (2010).

    CAS  PubMed  Google Scholar 

  18. Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol. 20, 445–452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Prekeris, R., Klumperman, J. & Scheller, R. H. A Rab11/Rip11 protein complex regulates apical membrane trafficking via recycling endosomes. Mol. Cell 6, 1437–1448 (2000).

    CAS  PubMed  Google Scholar 

  20. Swiatecka-Urban, A. et al. Myosin Vb is required for trafficking of the cystic fibrosis transmembrane conductance regulator in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells. J. Biol. Chem. 282, 23725–23736 (2007).

    CAS  PubMed  Google Scholar 

  21. Langevin, J. et al. Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-Cadherin trafficking from recycling endosomes to the plasma membrane. Dev. Cell 9, 355–376 (2005).

    Google Scholar 

  22. Ang, A. L. et al. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J. Cell Biol. 167, 531–543 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, S., Mehta, S., Pichaud, F., Bellen, H. & Quiocho, F. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12, 879–885 (2005).

    CAS  PubMed  Google Scholar 

  24. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, H. et al. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat. Cell Biol. 13, 1189–1201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hermann, G. J. et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell 16, 3273–3288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Fürden, D., Johnson, K., Segbert, C. & Bossinger, O. The C. elegans ezrin–radixin–moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Developmental Biol. 272, 262–276 (2004).

    Google Scholar 

  28. McGhee, J. D. The C. elegans intestine (March 27, 2007), WormBook, ed. The C. elegans Research Community, WormBook,http://dx.doi.org/10.1895/wormbook.1.133.1,http://www.wormbook.org.

  29. McGhee, J. D. The C. elegans intestine. WormBook 1–36 (2007).

  30. Nehrke, K. A reduction in intestinal cell pHi due to loss of the Caenorhabditis elegansNa+/H+ exchanger NHX-2 increases life span. J. Biol. Chem. 278, 44657–44666 (2003).

    CAS  PubMed  Google Scholar 

  31. Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin–Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    CAS  PubMed  Google Scholar 

  33. Blum, H. Models for the Perception of Speech and Visual Forms 362–380 (MIT Press, 1967).

    Google Scholar 

  34. Thomas, P. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967).

    CAS  PubMed  Google Scholar 

  36. McGary, K. L., Lee, I. & Marcotte, E. M. Broad network-based predictability of Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biol. 8, R258 (2007).

    PubMed  PubMed Central  Google Scholar 

  37. Kardon, J. R. & Vale, R. D. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10, 854–865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Horgan, C. P., Hanscom, S. R., Jolly, R. S., Futter, C. E. & McCaffrey, M. W. Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J. Cell Sci. 123, 181–191 (2010).

    CAS  PubMed  Google Scholar 

  39. Arimoto, M. et al. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci. 31, 2216–2224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol. 9, 1066–1073 (2007).

    CAS  PubMed  Google Scholar 

  41. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    CAS  PubMed  Google Scholar 

  42. Morton, D. et al. The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev. Biol. 241, 47–58 (2002).

    CAS  PubMed  Google Scholar 

  43. Jin, J. et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 14, 1436–1450 (2004).

    CAS  PubMed  Google Scholar 

  44. Pozuelo Rubio, M. et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem. J. 379, 395–408 (2004).

    PubMed  PubMed Central  Google Scholar 

  45. Angrand, P. O. et al. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol. Cell Proteomics 5, 2211–2227 (2006).

    CAS  PubMed  Google Scholar 

  46. Hurd, T. et al. Phosphorylation-dependent binding of 14-3-3 to the polarity protein Par3 regulates cell polarity in mammalian epithelia. Curr. Biol. 13, 2082–2090 (2003).

    CAS  PubMed  Google Scholar 

  47. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    CAS  PubMed  Google Scholar 

  48. Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J. 23, 4190–4201 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165–1177 (2006).

    CAS  PubMed  Google Scholar 

  50. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    CAS  PubMed  Google Scholar 

  51. Gohla, A. & Bokoch, G. M. 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr. Biol. 12, 1704–1710 (2002).

    CAS  PubMed  Google Scholar 

  52. Birkenfeld, J., Betz, H. & Roth, D. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3ζ. Biochem. J. 369, 45–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nagata-Ohashi, K. et al. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465–471 (2004).

    PubMed  PubMed Central  Google Scholar 

  54. Ono, K., Parast, M., Alberico, C., Benian, G. & Ono, S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J. Cell Sci. 116, 2073–2085 (2003).

    CAS  PubMed  Google Scholar 

  55. Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol. 6, 1173–1179 (2004).

    CAS  PubMed  Google Scholar 

  56. Hüsken, K. et al. Maintenance of the intestinal tube in Caenorhabditis elegans: the role of the intermediate filament protein IFC-2. Differentiation 76, 881–896 (2008).

    PubMed  Google Scholar 

  57. Koppen, M. et al. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat. Cell Biol. 3, 983–991 (2001).

    CAS  PubMed  Google Scholar 

  58. Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 20, 427–453 (2004).

    CAS  PubMed  Google Scholar 

  59. Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genetics 9, 554–566 (2008).

    CAS  PubMed  Google Scholar 

  60. Provance, W. et al. Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol. 9, 44 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Zenke, F. T. et al. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. J. Biol. Chem. 279, 18392–18400 (2004).

    CAS  PubMed  Google Scholar 

  62. Meek, S. E., Lane, W. S. & Piwnica-Worms, H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J. Biol. Chem. 279, 32046–32054 (2004).

    CAS  PubMed  Google Scholar 

  63. Chen, X. & Macara, I. G. Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J. Cell Biol. 172, 671–678 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kligys, K. et al. The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J. Biol. Chem. 282, 32520–32528 (2007).

    CAS  PubMed  Google Scholar 

  65. Rollason, R., Korolchuk, V., Hamilton, C., Jepson, M. & Banting, G. A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J. Cell Biol. 184, 721–736 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Torkko, J. M., Manninen, A., Schuck, S. & Simons, K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J. Cell Sci. 121, 1193–1203 (2008).

    CAS  PubMed  Google Scholar 

  67. Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol. 295, C545–C556 (2008).

    CAS  PubMed  Google Scholar 

  68. Cao, J., Albertson, R., Riggs, B., Field, C. M. & Sullivan, W. Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization. J. Cell Biol. 182, 301–313 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schuh, M. An actin-dependent mechanism for long-range vesicle transport. Nat. Cell Biol. 13, 1431–1436 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rodal, A. A., Motola-Barnes, R. N. & Littleton, J. T. Nervous wreck and Cdc42 cooperate to regulate endocytic actin assembly during synaptic growth. J. Neurosci. 28, 8316–8325 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    PubMed  PubMed Central  Google Scholar 

  74. Rolls, M. M., Hall, D. H., Victor, M., Stelzer, E.H. & Rapoport, T. A. Targeting of rough endoplasmic reticulum membrane proteins and ribosomes in invertebrate neurons. Mol. Biol. Cell 13, 1778–1791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Berdichevsky, A., Viswanathan, M., Horvitz, H. R. & Guarente, L. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125, 1165–1177 (2006).

    CAS  PubMed  Google Scholar 

  77. Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448, 366–369 (2007).

    CAS  PubMed  Google Scholar 

  78. Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    CAS  PubMed  Google Scholar 

  79. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    CAS  PubMed  Google Scholar 

  80. Gillingham, A. K., Pfeifer, A. C. & Munro, S. CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol. Biol. Cell 13, 3761–3774 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Fürden, D., Johnson, K., Segbert, C. & Bossinger, O. The C. elegans ezrin–radixin–moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Dev. Biol. 272, 262–276 (2004).

    PubMed  Google Scholar 

  82. Poteryaev, D., Fares, H., Bowerman, B. & Spang, A. Caenorhabditis elegans SAND-1 is essential for RAB-7 function in endosomal traffic. EMBO J. 26, 301–312 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nat. Cell Biol. 6, 1173 (2004).

    CAS  PubMed  Google Scholar 

  85. Hoege, C. et al. LGL can partition the cortex of one-cell Caenorhabditis elegans embryos into two domains. Curr. Biol. 20, 1296–1303 (2010).

    CAS  PubMed  Google Scholar 

  86. Schonegg, S. & Hyman, A. A. CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development 133, 3507–3516 (2006).

    CAS  PubMed  Google Scholar 

  87. Aono, S., Legouis, R., Hoose, W. & Kemphues, K. PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development 131, 2865–2874 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank various members of the HT-TDS including J. Wagner, M. Gierth and H. Grabner for assistance in development and robotic programming of automation steps of the screening workflow. We are very grateful to M. Storch, U. Frömmel, T. Döbel, L. Socher, S. Quaiser, S. Scheibe, F. Zakrezweski and D. Haase for their assistance throughout the primary HCS. We thank R. Schäfer for technical assistance. We are grateful to S. Eaton, K. Simons, E. Knust, E. Paluch, G. A. O’Sullivan, N. Goehring and B. Habermann for discussions and critical reading of the manuscript draft and to C. Eckmann for protocols and practical advice.

This study was supported by the German Federal Ministry of Education and Research (InnoRegio Initiative, grant number 03I4035A; the Systems Biology Network HepatoSys, grant number 0313082H, and the Virtual Liver initiative, www.virtual-liver.de), the EU sixth framework project ‘EndoTrack’ (FP6 Grant LSHG-CT-2006-019050) and the Max Planck Society’s inter-institutional initiative ‘RNA interference’. J.F.W. was supported by a PhD fellowship of the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Contributions

S.H. and M.Z. conceived the initial concept for the screen. S.H. established the screening platform with support from J.F.W. S.H. and J.F.W. conducted the genome-wide screen with the support of K.K., students from the Technical University Dresden and staff members from the High-Throughput Technology Development Studio (HT-TDS; see Acknowledgements). S.H. developed the image analysis software. J.F.W. conceived the embryonic lethal screen and conducted it with support from S.H. and students. S.H., J.F.W. and M.Z. analysed the data with the help of B.H., C.R.B. (general bioinformatics) and M.V. (hierarchical clustering). J.F.W. carried out secondary assays with the support of B.O.F. J.F.W. conceived, carried out and analysed the experiments on PAR-5. G.M. contributed to quantifications and statistical analysis on PAR-5. J.F.W. and M.Z. wrote the manuscript with the contribution of S.H., G.M., C.R.B. and M.V.

Corresponding authors

Correspondence to Kerstin Korn or Marino Zerial.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2101 kb)

Supplementary Table 1

Supplementary Information (XLS 297 kb)

Supplementary Table 2

Supplementary Information (XLS 12 kb)

Supplementary Table 3

Supplementary Information (PDF 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, J., Höpfner, S., Korn, K. et al. Caenorhabditis elegans screen reveals role of PAR-5 in RAB-11-recycling endosome positioning and apicobasal cell polarity. Nat Cell Biol 14, 666–676 (2012). https://doi.org/10.1038/ncb2508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing