Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis

Abstract

The circadian clock controls many metabolic, developmental and physiological processes in a time-of-day-specific manner in both plants and animals1,2. The photoreceptors involved in the perception of light and entrainment of the circadian clock have been well characterized in plants3. However, how light signals are transduced from the photoreceptors to the central circadian oscillator, and how the rhythmic expression pattern of a clock gene is generated and maintained by diurnal light signals remain unclear. Here, we show that in Arabidopsis thaliana, FHY3, FAR1 and HY5, three positive regulators of the phytochrome A signalling pathway, directly bind to the promoter of ELF4, a proposed component of the central oscillator, and activate its expression during the day, whereas the circadian-controlled CCA1 and LHY proteins directly suppress ELF4 expression periodically at dawn through physical interactions with these transcription-promoting factors. Our findings provide evidence that a set of light- and circadian-regulated transcription factors act directly and coordinately at the ELF4 promoter to regulate its cyclic expression, and establish a potential molecular link connecting the environmental light–dark cycle to the central oscillator.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FHY3 and FAR1 are essential for circadian gene expression and flowering-time control.
Figure 2: FHY3, FAR1, CCA1, LHY and HY5 directly bind to distinct cis elements in the ELF4 promoter in vitro and in vivo.
Figure 3: FHY3, FAR1 and HY5 activate ELF4 expression, whereas CCA1 and LHY suppress ELF4 expression.
Figure 4: CCA1 and LHY suppress the transcriptional activation activity of FHY3, FAR1 and HY5 through direct physical interaction.
Figure 5: FHY3, FAR1, HY5, CCA1 and LHY coordinately regulate the cyclic expression of ELF4.

Similar content being viewed by others

References

  1. de Montaigu, A., Toth, R. & Coupland, G. Plant development goes like clockwork. Trends Genet. 26, 296–306 (2010).

    Article  CAS  Google Scholar 

  2. McClung, C. R. Comes a time. Curr. Opin. Plant Biol. 11, 514–520 (2008).

    Article  CAS  Google Scholar 

  3. Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).

    Article  CAS  Google Scholar 

  4. Mas, P. & Yanovsky, M. J. Time for circadian rhythms: plants get synchronized. Curr. Opin. Plant Biol. 12, 574–579 (2009).

    CAS  PubMed  Google Scholar 

  5. Harmer, S. L. The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357–377 (2009).

    Article  CAS  Google Scholar 

  6. Pruneda-Paz, J. L. & Kay, S. A. An expanding universe of circadian networks in higher plants. Trends Plant Sci. 15, 259–265 (2010).

    Article  CAS  Google Scholar 

  7. Alabadi, D. et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883 (2001).

    Article  CAS  Google Scholar 

  8. Pruneda-Paz, J. L., Breton, G., Para, A. & Kay, S. A. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481–1485 (2009).

    Article  CAS  Google Scholar 

  9. Doyle, M. R. et al. The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74–77 (2002).

    Article  CAS  Google Scholar 

  10. Kikis, E. A., Khanna, R. & Quail, P. H. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J. 44, 300–313 (2005).

    Article  CAS  Google Scholar 

  11. McWatters, H. G. et al. ELF4 is required for oscillatory properties of the circadian clock. Plant Physiol. 144, 391–401 (2007).

    Article  CAS  Google Scholar 

  12. Lin, R. et al. Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318, 1302–1305 (2007).

    Article  CAS  Google Scholar 

  13. Allen, T. et al. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18, 2506–2516 (2006).

    Article  CAS  Google Scholar 

  14. Kobayashi, Y. & Weigel, D. Move on up, it’s time for change–mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371–2384 (2007).

    Article  CAS  Google Scholar 

  15. Mockler, T. et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl Acad. Sci. USA 100, 2140–2145 (2003).

    Article  CAS  Google Scholar 

  16. Salazar, J. D. et al. Prediction of photoperiodic regulators from quantitative gene circuit models. Cell 139, 1170–1179 (2009).

    Article  CAS  Google Scholar 

  17. Lee, J. et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749 (2007).

    Article  CAS  Google Scholar 

  18. Oravecz, A. et al. Constitutively photomorphogenic1 is required for the UV-B response in Arabidopsis. Plant Cell 18, 1975–1990 (2006).

    Article  CAS  Google Scholar 

  19. Wang, Z. Y. & Tobin, E. M. Constitutive expression of the circadian clock associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).

    Article  CAS  Google Scholar 

  20. Yakir, E. et al. Posttranslational regulation of circadian clock associated1 in the circadian oscillator of Arabidopsis. Plant Physiol. 150, 844–857 (2009).

    Article  CAS  Google Scholar 

  21. Lu, S. X., Knowles, S. M., Andronis, C., Ong, M. S. & Tobin, E. M. Circadian clock associated 1 and late elongated hypocotyl function synergistically in the circadian clock of Arabidopsis. Plant Physiol. 150, 834–843 (2009).

    Article  CAS  Google Scholar 

  22. Andronis, C., Barak, S., Knowles, S. M., Sugano, S. & Tobin, E. M. The clock protein CCA1 and the bZIP transcription factor HY5 physically interact to regulate gene expression in Arabidopsis. Mol. Plant. 1, 58–67 (2008).

    Article  CAS  Google Scholar 

  23. Kim, J. Y., Song, H. R., Taylor, B. L. & Carre, I. A. Light-regulated translation mediates gated induction of the Arabidopsis clock protein LHY. EMBO J. 22, 935–944 (2003).

    Article  CAS  Google Scholar 

  24. Hall, A. et al. The time for coffee gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15, 2719–2729 (2003).

    Article  CAS  Google Scholar 

  25. Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).

    Article  CAS  Google Scholar 

  26. Cyran, S. A. et al. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 329–341 (2003).

    Article  CAS  Google Scholar 

  27. Harmer, S. L. & Kay, S. A. Positive and negative factors confer phase-specific circadian regulation of transcription in Arabidopsis. Plant Cell 17, 1926–1940 (2005).

    Article  CAS  Google Scholar 

  28. Nagy, F. & Schafer, E. Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329–355 (2002).

    Article  CAS  Google Scholar 

  29. Khanna, R., Kikis, E. A. & Quail, P. H. Early flowering 4 functions in phytochrome B-regulated seedling de-etiolation. Plant Physiol. 133, 1530–1538 (2003).

    Article  CAS  Google Scholar 

  30. Saijo, Y. et al. Arabidopsis COP1/SPA1 complex and FHY1/FHY3 associate with distinct phosphorylated forms of phytochrome A in balancing light signaling. Mol. Cell. 31, 607–613 (2008).

    Article  CAS  Google Scholar 

  31. Wang, H. & Deng, X. W. Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J. 21, 1339–1349 (2002).

    Article  CAS  Google Scholar 

  32. Green, R. M. & Tobin, E. M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl Acad. Sci. USA 96, 4176–4179 (1999).

    Article  CAS  Google Scholar 

  33. Holm, M., Ma, L. G., Qu, L. J. & Deng, X. W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 16, 1247–1259 (2002).

    Article  CAS  Google Scholar 

  34. Millar, A. J., Short, S. R., Chua, N. H. & Kay, S. A. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4, 1075–1087 (1992).

    Article  CAS  Google Scholar 

  35. Strayer, C. et al. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768–771 (2000).

    Article  CAS  Google Scholar 

  36. Michael, T. P. & McClung, C. R. Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol. 130, 627–638 (2002).

    Article  CAS  Google Scholar 

  37. Yang, J. et al. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17, 804–821 (2005).

    Article  CAS  Google Scholar 

  38. Yamamoto, Y. Y., Matsui, M., Ang, L. H. & Deng, X. W. Role of a COP1 interactive protein in mediating light-regulated gene expression in Arabidopsis. Plant Cell 10, 1083–1094 (1998).

    Article  CAS  Google Scholar 

  39. Lin, R. et al. Discrete and essential roles of the multiple domains of Arabidopsis FHY3 in mediating phytochrome a signal transduction. Plant Physiol. 148, 981–992 (2008).

    Article  CAS  Google Scholar 

  40. Tzfira, T. et al. pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Mol. Biol. 57, 503–516 (2005).

    Article  CAS  Google Scholar 

  41. Hellens, R. P. et al. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13 (2005).

    Article  Google Scholar 

  42. Liu, H. et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322, 1535–1539 (2008).

    Article  CAS  Google Scholar 

  43. Walter, M. et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428–438 (2004).

    Article  CAS  Google Scholar 

  44. Chen, H. et al. Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol. 146, 368–376 (2008).

    Article  CAS  Google Scholar 

  45. Osterlund, M. T., Hardtke, C. S., Wei, N. & Deng, X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466 (2000).

    Article  CAS  Google Scholar 

  46. Kwok, S. F., Staub, J. M. & Deng, X. W. Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex. J. Mol. Biol. 285, 85–95 (1999).

    Article  CAS  Google Scholar 

  47. Daniel, X., Sugano, S. & Tobin, E. M. CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc. Natl Acad. Sci. USA 101, 3292–3297 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kay for providing the CAB2::LUC, TOC1::LUC and CCA1::GFP–CCA1 reporter lines; R. McClung for CAT3::LUC reporter lines; R. Ulm for the HY5::HY5–YFP seeds; K. Halliday for the cca1-11 lhy-21 double-mutant seeds; T. Mockler for discussion; T. Xu for technical help with IVIS Spectrum; and C. Lin and J-M. Zhou for providing the transient expression system (Dual-LUC) and LCI system. This work was supported by grants from National Science Foundation (IOS-1026630 and MCB-1004808) to H.W., the Biotechnology and Biological Sciences Research Council (BBF02116X1) to P.F.D., National Institutes of Health (GM47850) to X.W.D. and National High Technology Research and Development Program of China (2009AA101101) to J.W.

Author information

Authors and Affiliations

Authors

Contributions

P.F.D., X.W.D., J.W. and H.W. contributed to project design. R.L. recorded the phenotype of fhy3 mutants and generated FHY3–LUC reporter lines. X-Y.W. generated 3×Flag–3×HA transgenic lines. H.S. carried out the bioluminescence analyses of all the LUC reporter lines. Y.T. carried out the yeast assays, qRT–PCR and generated ELF4-OX transgenic lines. G.L. carried out all other experiments. G.L., P.F.D. and H.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Haiyang Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Siddiqui, H., Teng, Y. et al. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13, 616–622 (2011). https://doi.org/10.1038/ncb2219

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2219

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing