Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor

Abstract

During apoptosis, dying cells are swiftly removed by phagocytes. It is not fully understood how apoptotic cells are recognized by phagocytes. Here we report the identification and characterization of the Caenorhabditis elegans ttr-52 gene, which encodes a transthyretin-like protein and is required for efficient cell corpse engulfment. The TTR-52 protein is expressed in, and secreted from, C. elegans endoderm and clusters around apoptotic cells. Genetic analysis indicates that TTR-52 acts in the cell corpse engulfment pathway mediated by CED-1, CED-6 and CED-7 and affects clustering of the phagocyte receptor CED-1 around apoptotic cells. TTR-52 recognizes surface-exposed phosphatidylserine (PtdSer) in vivo and binds to both PtdSer and the extracellular domain of CED-1 in vitro. TTR-52 is therefore the first bridging molecule identified in C. elegans that mediates recognition of apoptotic cells by crosslinking the PtdSer 'eat me' signal with the phagocyte receptor CED-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ttr-52 is important for cell corpse engulfment in C. elegans.
Figure 2: ttr-52 encodes a secreted, transthyretin-like protein important for cell corpse engulfment.
Figure 3: TTR-52 is expressed in and secreted from intestine cells and binds to the surface of apoptotic cells.
Figure 4: TTR-52 and CED-1 interact and co-localize to apoptotic cells.
Figure 5: Clustering of TTR-52 and CED-1 around apoptotic cells monitored by time-lapse microscopy.
Figure 6: TTR-52 binds surface-exposed PtdSer.
Figure 7: TTR-52 mediates the random removal of neurons with surface-exposed PtdSer.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol. 11, R795–R805 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Reddien, P. W. & Horvitz, H. R. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu. Rev. Cell Dev. Biol. 20, 193–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat. Cell Biol. 2, 131–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H. R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, Y. C., Tsai, M. C., Cheng, L. C., Chou, C. J. & Weng, N. Y. C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment. Dev. Cell 1, 491–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Su, H. P. et al. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 277, 11772–11779 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hamon, Y. et al. Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS ONE 1, e120 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manaka, J. et al. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 279, 48466–48476 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Kurant, E., Axelrod, S., Leaman, D. & Gaul, U. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498–509 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Fadok, V. A. et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148, 2207–2216 (1992).

    CAS  PubMed  Google Scholar 

  18. Gardai, S. J., Bratton, D. L., Ogden, C. A. & Henson, P. M. Recognition ligands on apoptotic cells: a perspective. J. Leukoc. Biol. 79, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, X. et al. C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nature Cell Biol. 9, 541–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Zullig, S. et al. Aminophospholipid translocase TAT-1 promotes phosphatidylserine exposure during C. elegans apoptosis. Curr. Biol. 17, 994–999 (2007).

    Article  PubMed  Google Scholar 

  21. Venegas, V. & Zhou, Z. Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol. Biol. Cell 18, 3180–3192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Darland-Ransom, M. et al. Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320, 528–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. et al. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302, 1563–1566 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, X., Odera, S., Chuang, C. H., Lu, N. & Zhou, Z. C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev. Cell 10, 743–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hoeppner, D. J., Hengartner, M. O. & Schnabel, R. Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412, 202–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Reddien, P. W., Cameron, S. & Horvitz, H. R. Phagocytosis promotes programmed cell death in C. elegans. Nature 412, 198–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Schreiber, G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 175, 61–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Sonnhammer, E. L. & Durbin, R. Analysis of protein domain families in Caenorhabditis elegans. Genomics 46, 200–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Saverwyns, H. et al. Analysis of the transthyretin-like (TTL) gene family in Ostertagia ostertagi — comparison with other strongylid nematodes and Caenorhabditis elegans. Int. J. Parasitol. 38, 1545–1556 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Conradt, B. & Horvitz, H. R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 98, 317–327 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kennedy, B. P. et al. The gut esterase gene (ges-1) from the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J. Mol. Biol. 229, 890–908 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Robertson, A. G. & Thomson, J. N. Morphology of programmed cell death in the ventral nerve chord of C. elegans larvae. J. Embryol. Exp. Morphol. 67, 89 (1982).

    Google Scholar 

  34. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, J., Heegaard, C. W., Rasmussen, J. T. & Gilbert, G. E. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta 1667, 82–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kritikou, E. A. et al. C. elegans GLA-3 is a novel component of the MAP kinase MPK-1 signaling pathway required for germ cell survival. Genes Dev. 20, 2279–2292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Anderson, H. A. et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat. Immunol. 4, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Balasubramanian, K., Chandra, J. & Schroit, A. J. Immune clearance of phosphatidylserine-expressing cells by phagocytes. The role of β2-glycoprotein I in macrophage recognition. J. Biol. Chem. 272, 31113–31117 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Ishimoto, Y., Ohashi, K., Mizuno, K. & Nakano, T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J. Biochem. (Tokyo) 127, 411–417 (2000).

    Article  CAS  Google Scholar 

  42. Vandivier, R. W. et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J. Immunol. 169, 3978–3986 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Savill, J., Fadok, V., Henson, P. & Haslett, C. Phagocyte recognition of cells undergoing apoptosis. Immunol. Today 14, 131–136 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Gardai, S. J. et al. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Eneqvist, T., Lundberg, E., Nilsson, L., Abagyan, R. & Sauer-Eriksson, A. E. The transthyretin-related protein family. Eur. J. Biochem. 270, 518–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Lundberg, E., Backstrom, S., Sauer, U. H. & Sauer-Eriksson, A. E. The transthyretin-related protein: structural investigation of a novel protein family. J. Struct. Biol. 155, 445–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, Y. et al. Mouse transthyretin-related protein is a hydrolase which degrades 5-hydroxyisourate, the end product of the uricase reaction. Mol. Cells 22, 141–145 (2006).

    CAS  PubMed  Google Scholar 

  48. Nam, K. H. & Li, J. The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16, 2406–2417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fadeel, B. & Xue, D. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44, 264–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Preiss, J. R. (eds). C. elegans II (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  52. Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79–94 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Geng, X. et al. Inhibition of CED-3 zymogen activation and apoptosis in Caenorhabditis elegans by caspase homolog CSP-3. Nat. Struct. Mol. Biol. 15, 1094–1101 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. McGhee for the Pges-1GFP construct and T. Blumenthal for comments and discussion on the manuscript. This work was supported by a Burroughs Wellcome Fund Award (D.X.), NIH R01 grants GM59083 and GM79097 (D.X.), and the National High Technology Project 863 of China (X.C.W).

Author information

Authors and Affiliations

Authors

Contributions

X.C.W. and W.D.L. performed most of the genetic and cell biological experiments. D.F.Z. performed both PtdSer binding experiments and in vitro protein interaction assays. Y.S. performed immunoprecipitation experiments in C. elegans. B.L., B.H.C., P.F.G. and X.G. performed some of the genetic and cell biological experiments. H.W.Y. performed the initial in vitro PtdSer binding experiments and E. P. conducted a bioinformatic analysis of TTR family proteins. Z.H.S., E.K.N. and S.M. contributed to the generation of strains. X.C.W. and D.X. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Xiaochen Wang or Ding Xue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 896 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Li, W., Zhao, D. et al. Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat Cell Biol 12, 655–664 (2010). https://doi.org/10.1038/ncb2068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing