Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BRD7 is a candidate tumour suppressor gene required for p53 function

Abstract

Oncogene-induced senescence is a p53-dependent defence mechanism against uncontrolled proliferation. Consequently, many human tumours harbour p53 mutations and others show a dysfunctional p53 pathway, frequently by unknown mechanisms. Here we identify BRD7 (bromodomain-containing 7) as a protein whose inhibition allows full neoplastic transformation in the presence of wild-type p53. In human breast tumours harbouring wild-type, but not mutant, p53 the BRD7 gene locus was frequently deleted and low BRD7 expression was found in a subgroup of tumours. Functionally, BRD7 is required for efficient p53-mediated transcription of a subset of target genes. BRD7 interacts with p53 and p300 and is recruited to target gene promoters, affecting histone acetylation, p53 acetylation and promoter activity. Thus, BRD7 suppresses tumorigenicity by serving as a p53 cofactor required for the efficient induction of p53-dependent oncogene-induced senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genetic screen for genes required for OIS identifies BRD7.
Figure 2: Genetic interaction of BRD7 with the p53 pathway.
Figure 3: BRD7 interacts physically with p53.
Figure 4: BRD7 is required for efficient transcriptional activation of a specific subset of p53 target genes.
Figure 5: BRD7 binds to selected p53 target gene promoters in a p53-dependent fashion and affects histone acetylation and promoter activity.
Figure 6: BRD7 controls loading of p300 on the P21 promoter and affects p53 C-terminal acetylation.
Figure 7: Inhibition of BRD7 cooperates to transform primary human fibroblasts, and BRD7 expression is lost in a subset of breast tumours containing wild-type p53.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  2. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  3. Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005).

    Article  CAS  Google Scholar 

  4. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).

    Article  CAS  Google Scholar 

  5. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  6. Bartkova, J. et al. DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 26, 7414–7422 (2007).

    Article  CAS  Google Scholar 

  7. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    Article  CAS  Google Scholar 

  8. Voorhoeve, P. M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).

    Article  CAS  Google Scholar 

  9. Robinson, K., Asawachaicharn, N., Galloway, D. A., Grandori, C. c-Myc accelerates S-phase and requires WRN to avoid replication stress. Plos ONE 4, e5951 (2009).

    Article  Google Scholar 

  10. Godar, S. et al. growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134, 62–73 (2008).

    Article  CAS  Google Scholar 

  11. Ard, P. G. et al. Transcriptional regulation of the mdm2 oncogene by p53 requires TRRAP acetyltransferase complexes. Mol. Cell. Biol. 22, 5650–5661 (2002).

    Article  CAS  Google Scholar 

  12. Peng, C. et al. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain. J. Cell Biol. 97, 882–892 (2006).

    CAS  Google Scholar 

  13. Sun, H. et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem. Biophys. Res. Commun. 358, 435–441 (2007).

    Article  CAS  Google Scholar 

  14. Kaeser, M. D., Aslanian, A., Dong, M. Q., Yates, J. R. III & Emerson, B. M. BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J. Biol. Chem. 283, 32254–32263 (2008).

    Article  CAS  Google Scholar 

  15. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  16. Zhao, Y. et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21 (Waf1/Cip1). Mol. Cell. Biol. 26, 2782–2790 (2006).

    Article  CAS  Google Scholar 

  17. Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    Article  CAS  Google Scholar 

  18. Espinosa, J. M., Verdun, R. E. & Emerson, B. M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).

    Article  CAS  Google Scholar 

  19. Dornan, D., Shimizu, H., Perkins, H. D. & Hupp, T. R. DNA-dependent acetylation of p53 by the transcription coactivator p300. J. Biol. Chem. 278, 13431–13441 (2003).

    Article  CAS  Google Scholar 

  20. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  Google Scholar 

  21. Luo, J. et al. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc. Natl Acad. Sci. USA 101, 2259–2264 (2004).

    Article  CAS  Google Scholar 

  22. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  23. Argos, M. et al. Genomewide scan for loss of heterozygosity and chromosomal amplification in breast carcinoma using single-nucleotide polymorphism arrays. Cancer Genet. Cytogenet. 182, 69–74 (2008).

    Article  CAS  Google Scholar 

  24. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. USA 102, 13550–13555 (2005).

    Article  CAS  Google Scholar 

  25. Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006).

    Article  CAS  Google Scholar 

  26. Van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  27. Roepman, P. et al. Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer. Clin. Cancer Res. 15, 7003–7011.

    Article  CAS  Google Scholar 

  28. Hendricks, K. B., Shanahan, F. & Lees, E. Role for BRG1 in cell cycle control and tumor suppression. Mol. Cell. Biol. 24, 362–376 (2004).

    Article  CAS  Google Scholar 

  29. Kang, H., Cui, K. & Zhao, K. BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol. Cell. Biol. 24, 1188–1199 (2004).

    Article  CAS  Google Scholar 

  30. Xu, Y., Zhang, J. & Chen X. The activity of p53 is differentially regulated by Brm- and Brg1-containing SWI/SNF chromatin remodeling complexes. J. Biol. Chem. 282, 37429–37435 (2007).

    Article  CAS  Google Scholar 

  31. Gévry, N., Chan, H. M., Laflamme, L., Livingston, D. M. & Gaudreau, L. p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21, 1869–1881.

  32. Zhou, J. et al. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J. Cell Physiol. 200, 89–98 (2004).

    Article  CAS  Google Scholar 

  33. Peng, C. et al. BRD7 suppresses the growth of nasopharyngeal carcinoma cells (HNE1) through negatively regulating β-catenin and ERK pathways. Mol. Cell. Biochem. 303, 141–149 (2007).

    Article  CAS  Google Scholar 

  34. Liu, H. et al. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer 8, 253 (2008).

    Article  CAS  Google Scholar 

  35. Yu, Y. et al. Analysis and molecular cloning of differentially expressing genes in nasopharyngeal carcinoma [in Chinese]. Acta Biochim. Biophys. Sin. 32, 327–332 (2000).

    CAS  PubMed  Google Scholar 

  36. Spruck, C. H. III et al. Absence of p53 mutations in primary nasopharyngeal carcinomas. Cancer Res. 52, 4787–4790 (1992).

    CAS  PubMed  Google Scholar 

  37. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  Google Scholar 

  38. Shamir, R. et al. EXPANDER-an integrative program suite for microarray data analysis. BMC Bioinformatics 6, 232 (2005).

    Article  Google Scholar 

  39. Brummelkamp, T. R., Bernards, R. & Agami, R. Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247 (2002).

    Article  CAS  Google Scholar 

  40. Kolfschoten, I. G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849–858 (2005).

    Article  CAS  Google Scholar 

  41. De Vita, G. et al. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol. Endocrinol. 19, 76–89 (2005).

    Article  CAS  Google Scholar 

  42. Kzhyshkowska, J., Rusch, A., Wolf, H. & Dobner, T. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7. Biochem. J. 371, 385–393 (2003).

    Article  CAS  Google Scholar 

  43. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  44. Müller, M. et al. P53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998).

    Article  Google Scholar 

  45. Mantovani, F. et al. The prolyl-isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Struct. Mol. Biol. 14, 921 – 920 (2007).

    Article  Google Scholar 

  46. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408 (2001).

    Article  CAS  Google Scholar 

  47. Gostissa, M. et al. The transcriptional repressor hDaxx potentiates p53-dependent apoptosis. J. Biol. Chem. 279, 48013–48023 (2004).

    Article  CAS  Google Scholar 

  48. Gyuris, J., Golemis, E., Chertkov, H. & Brent, R. Cdi1, a human G1 and S phase protein phophatase that associates with Cdk2. Cell 75, 791–803 (1993).

    Article  CAS  Google Scholar 

  49. Ji, H. et al. An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nature Biotechnol. 26, 1293–1300 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Licio Collavin for discussion; Mauro Giacca, Marina Lusic and Lucia Pattarini for access to ICGEB facilities; Thomas Dobner for providing BRD7 expression constructs; Bruno Amati for p300 expression plasmid; Roderick Bijersbergen for assistance in the RNA-mediated interference array experiment; and Joachim Oude-Vrielink and Mariette Schrier for technical assistance. This work was supported by grants from the Dutch Cancer Society (KWF) to J.D., P.M.V and R.A., a European Young Investigator (EURYI) award to R.A. and by the Centre for Biomedical Genetics (CBG) (R.A.), the European Research Council (ERC) (R.A.), the Associazione Italiana per la Ricerca sul Cancro, Ministero dell'Università e della Ricerca (G.D.S.) and by EC FP6 (contracts 503576 and 502963).

Author information

Authors and Affiliations

Authors

Contributions

J.D., F.M. and F.T. performed most of the experimental work. J.D., F.M., R.A. and G.D.S wrote the manuscript. P.M.V., R.A. and G.D.S supervised the project. R.E. performed bioinformatical analyses regarding ChIP-sequencing and mRNA expression experiments. A.C. conducted the in vitro pull-down assays. H.H. and J.J. performed the comparative genomic hybridization analysis. R.K. conducted the ChIP-sequencing procedure. P.M.V. contributed to analyses of mRNA expression data sets of human breast tumours.

Corresponding authors

Correspondence to P. Mathijs Voorhoeve, Reuven Agami or Giannino Del Sal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drost, J., Mantovani, F., Tocco, F. et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12, 380–389 (2010). https://doi.org/10.1038/ncb2038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing