Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI

Abstract

Transforming growth factor-β (TGF-β) induces epithelial–mesenchymal transdifferentiation (EMT) accompanied by cellular differentiation and migration1,2,3,4,5. Despite extensive transcriptomic profiling, the identification of TGF-β-inducible, EMT-specific genes has met with limited success. Here we identify a post-transcriptional pathway by which TGF-β modulates the expression of EMT-specific proteins and of EMT itself. We show that heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1) binds a structural, 33-nucleotide TGF-β-activated translation (BAT) element in the 3′ untranslated region of disabled-2 (Dab2) and interleukin-like EMT inducer (ILEI) transcripts, and represses their translation. TGF-β activation leads to phosphorylation at Ser 43 of hnRNP E1 by protein kinase Bβ/Akt2, inducing its release from the BAT element and translational activation of Dab2 and ILEI messenger RNAs. Modulation of hnRNP E1 expression or its post-translational modification alters the TGF-β-mediated reversal of translational silencing of the target transcripts and EMT. These results suggest the existence of a TGF-β-inducible post-transcriptional regulon that controls EMT during the development and metastatic progression of tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGF-β translationally upregulates Dab2 expression.
Figure 2: The 3′ UTR of Dab2 mRNA contains a cis-regulatory (BAT) element, which is also present in ILEI mRNA.
Figure 3: hnRNP E1 is an integral functional component of the mRNP complex.
Figure 4: Phosphorylation of hnRNP E1 at Ser 43 by TGF-β-mediated activation of Akt2 disrupts its binding to the BAT element and activates the translation of Dab2 and ILEI.
Figure 5: Modulation of hnRNP E1 expression or its post-translational modification alters the translation of Dab2 and ILEI and the sensitivity of NMuMG cells to TGF-β-induced EMT.

Similar content being viewed by others

References

  1. Massagué, J. TGFβ in cancer. Cell 134, 215–230 (2008).

    Article  Google Scholar 

  2. Bierie, B. & Moses, H. L. TGF-β and cancer. Cytokine Growth Factor Rev. 17, 29–40 (2006).

    Article  CAS  Google Scholar 

  3. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  Google Scholar 

  4. Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  Google Scholar 

  5. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell. Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  6. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    Article  CAS  Google Scholar 

  7. Thuault, S. et al. Transforming growth factor-β employs HMGA2 to elicit epithelial–mesenchymal transition. J. Cell Biol. 174, 175–183 (2006).

    Article  CAS  Google Scholar 

  8. Oft, M. et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462–2477 (1996).

    Article  CAS  Google Scholar 

  9. Prunier, C. & Howe, P. H. Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J. Biol. Chem. 280, 17540–17548 (2005).

    Article  CAS  Google Scholar 

  10. Waerner, T. et al. ILEI: a cytokine essential for EMT, tumor formation, and late events in metastasis in epithelial cells. Cancer Cell 10, 227–239 (2006).

    Article  CAS  Google Scholar 

  11. Greinwald, J. H. Jr et al. Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to chromosome region 7q31. Am. J. Med. Genet. 78, 107–113 (1998).

    Article  Google Scholar 

  12. Zhu, Y. et al. Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics 80, 144–150 (2002).

    Article  CAS  Google Scholar 

  13. Pradet-Balade, B., Boulme, F., Beug, H., Mullner, E. W. & Garcia-Sanz, J. A. Translation control: bridging the gap between genomics and proteomics? Trends Biochem. Sci. 26, 225–229 (2001).

    Article  CAS  Google Scholar 

  14. Kang, Y. & Massagué, J. Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118, 277–279 (2004).

    Article  CAS  Google Scholar 

  15. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

  16. Grillo, G., Licciulli, F., Liuni, S., Sbisa, E. & Pesole, G. PatSearch: a program for the detection of patterns and structural motifs in nucleotide sequences. Nucleic Acids Res. 31, 3608–3612 (2003).

    Article  CAS  Google Scholar 

  17. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  Google Scholar 

  18. Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L. & Arteaga, C. L. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J. Biol. Chem. 275, 36803–36810 (2000).

    Article  CAS  Google Scholar 

  19. Kattla, J. J., Carew, R. M., Heljic, M., Godson, C. & Brazil, D. P. Protein kinase B/Akt activity is involved in renal TGF-β1-driven epithelial–mesenchymal transition in vitro and in vivo. Am. J. Physiol. Renal Physiol. 295, F215–F225 (2008).

    Article  CAS  Google Scholar 

  20. Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biol. 11, 881–889 (2009).

    Article  CAS  Google Scholar 

  21. Meng, Q. et al. Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proc. Natl Acad. Sci. USA 104, 5866–5871 (2007).

    Article  CAS  Google Scholar 

  22. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  23. Brazil, D. P. & Hemmings, B. A. Ten years of protein kinase B signaling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    Article  CAS  Google Scholar 

  24. Kato, S., Ding, J. & Du, K. Differential activation of CREB by Akt1 and Akt2. Biochem. Biophys. Res. Commun. 354, 1061–1066 (2007).

    Article  CAS  Google Scholar 

  25. Lamouille, S. & Derynck, R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J. Cell Biol. 178, 437–451 (2007).

    Article  CAS  Google Scholar 

  26. Irie, H. Y. et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. J. Cell Biol. 171, 1023–1034 (2005).

    Article  CAS  Google Scholar 

  27. Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161–1167 (2002).

    Article  CAS  Google Scholar 

  28. Nishinakamura, H. et al. An RNA-binding protein αCP-1 is involved in the STAT3-mediated suppression of NF-κB transcriptional activity. Int. Immunol. 19, 609–619 (2007).

    Article  CAS  Google Scholar 

  29. Wildey, G. M., Patil, S. & Howe, P. H. Smad3 potentiates transforming growth factor-β (TGF-β)-induced apoptosis and expression of the BH3-only protein Bim in WEHI 231 B lymphocytes J. Biol. Chem. 278, 18069–18077 (2003).

    Article  CAS  Google Scholar 

  30. Hocevar, B. A., Brown, T. L. & Howe, P. H. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18, 1345–1356 (1999).

    Article  CAS  Google Scholar 

  31. Mazumder, B. & Fox, P. L. Delayed translational silencing of ceruloplasmin transcript in γ interferon-activated U937 monocytic cells: role of the 3′ untranslated region. Mol. Cell. Biol. 19, 6898–6905 (1999).

    Article  CAS  Google Scholar 

  32. Hampton, M. B., Zhivotovsky, B., Slater, A. F., Burgess, D. H. & Orrenius, S. Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts. Biochem. J. 329, 95–99 (1998).

    Article  CAS  Google Scholar 

  33. Ray, P. S. & Fox, P. L. A post-transcriptional pathway represses monocyte VEGF-A expression and angiogenic activity. EMBO J. 26, 3360–3372 (2007).

    Article  CAS  Google Scholar 

  34. Legagneux, V., Bouvet, P., Omilli, F., Chevalier, S. & Osborne, H. B. Identification of RNA-binding proteins specific to Xenopus Eg maternal mRNAs: association with the portion of Eg2 mRNA that promotes deadenylation in embryos. Development 116, 1193–1202 (1992).

    CAS  PubMed  Google Scholar 

  35. Sampath, P. et al. Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119, 195–208 (2004).

    Article  CAS  Google Scholar 

  36. Qi, X. J., Wildey, G. M. & Howe, P. H. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. J. Biol. Chem. 281, 813–823 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Donna M. Driscoll, Barsanjit Mazumder and members of our laboratory for helpful discussions and critical insights. We value the assistance of Michael T. Kinter and Belinda Willard for liquid chromatography–mass spectrometry; of Judith A. Drazba and John Peterson for imaging; and of Michael Budiman for fast performance liquid chromatography. We thank Rakesh Kumar for the gift of the GST–hnRNP E1 construct, Takashi Kobayashi for the gifts of mouse pCMV14-hnRNP E1-Flag and psiRNA-hH1neo-mouse hnRNP E1, and Harold Moses for giving us the EpRas cell line. This work was supported by grants CA55536 and CA80095 from the National Cancer Institute to P.H.H. A.C. is supported by an American Heart Association (Ohio Valley Affiliate) Pre-doctoral Fellowship 075080B.

Author information

Authors and Affiliations

Authors

Contributions

P.H.H. directed the project. G.J. made the initial observation of uncoupled Dab2 mRNA and protein expression levels. G.S.H. performed the experiments in the EpRas cell line. P.S.R. contributed to the polysome profiling and PatSearch analyses. P.L.F. provided critical insights and expertise throughout. G.J., G.S.H. and A.C. made all the reagents. A.C. performed most of the experiments. P.H.H. and A.C. analysed the data and wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Philip H. Howe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhury, A., Hussey, G., Ray, P. et al. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 12, 286–293 (2010). https://doi.org/10.1038/ncb2029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing