Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA

A Corrigendum to this article was published on 01 June 2010

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to several acquired immune deficiency syndrome-related malignancies, including Kaposi's sarcoma, primary effusion lymphoma (PEL) and a subset of multicentric Castleman's disease1. Control of viral lytic replication is essential for KSHV latency, evasion of the host immune system and induction of tumours1. Here, we show that deletion of a 14 microRNA (miRNA) cluster from the KSHV genome significantly enhances viral lytic replication as a result of reduced NF-κB activity. The miRNA cluster regulates the NF-κB pathway by reducing expression of IκBα protein, an inhibitor of NF-κB complexes. Computational and miRNA seed mutagenesis analyses were used to identify KSHV miR-K1, which directly regulates the IκBα protein level by targeting the 3′UTR of its transcript. Expression of miR-K1 is sufficient to rescue NF-κB activity and inhibit viral lytic replication, whereas inhibition of miR-K1 in KSHV-infected PEL cells has the opposite effect. Thus, KSHV encodes an miRNA to control viral replication by activating the NF-κB pathway. These results demonstrate an important role for KSHV miRNAs in regulating viral latency and lytic replication by manipulating the host survival pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KSHV miRNA cluster inhibits viral lytic replication.
Figure 2: A KSHV miRNA cluster enhances NF-κB activity to inhibit viral lytic replication.
Figure 3: A KSHV miRNA cluster regulates the NF-κB pathway through direct targeting of the IκBα 3′UTR by miR-K1.
Figure 4: KSHV miR-K1 inhibits viral lytic replication by enhancing NF-κB activity.

Similar content being viewed by others

References

  1. Ganem, D. KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu. Rev. Pathol. 1, 273–296 (2006).

    Article  CAS  Google Scholar 

  2. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005).

    Article  CAS  Google Scholar 

  3. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005).

    Article  CAS  Google Scholar 

  4. Samols, M. A., Hu, J., Skalsky, R. L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).

    Article  CAS  Google Scholar 

  5. Grundhoff, A., Sullivan, C. S. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human γ-herpesviruses. RNA 12, 733–750 (2006).

    Article  CAS  Google Scholar 

  6. O'Hara, A. J. et al. Pre-microRNA signatures delineate stages of endothelial cell transformation in Kaposi's sarcoma. PLoS Pathog. 5, e1000389 (2009).

    Article  Google Scholar 

  7. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  Google Scholar 

  8. Skalsky, R. L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).

    Article  CAS  Google Scholar 

  9. Samols, M. A. et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 3, e65 (2007).

    Article  Google Scholar 

  10. Ziegelbauer, J. M., Sullivan, C. S. & Ganem, D. Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nature Genet. 41, 130–134 (2009).

    Article  CAS  Google Scholar 

  11. Nachmani, D., Stern-Ginossar, N., Sarid, R. & Mandelboim, O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5, 376–385 (2009).

    Article  CAS  Google Scholar 

  12. Qin, Z., Kearney, P., Plaisance, K. & Parsons, C. H. Pivotal Advance: Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J. Leukoc. Biol. 87, 25–34 (2010).

    Article  CAS  Google Scholar 

  13. Zhou, F. C. et al. Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J. Virol. 76, 6185–6196 (2002).

    Article  CAS  Google Scholar 

  14. Greene, W. et al. Molecular biology of KSHV in relation to AIDS-associated oncogenesis. Cancer Treat. Res. 133, 69–127 (2007).

    Article  CAS  Google Scholar 

  15. Murphy, E., Vanicek, J., Robins, H., Shenk, T. & Levine, A. J. Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc. Natl Acad. Sci. USA 105, 5453–5458 (2008).

    Article  CAS  Google Scholar 

  16. Zhu, F. X., Cusano, T. & Yuan, Y. Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J. Virol. 73, 5556–5567 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye, F. C. et al. Kaposi's sarcoma-associated herpesvirus latent gene vFLIP inhibits viral lytic replication through NF-κB-mediated suppression of the AP-1 pathway: a novel mechanism of virus control of latency. J. Virol. 82, 4235–4249 (2008).

    Article  CAS  Google Scholar 

  18. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  Google Scholar 

  19. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324, 242–246 (2009).

    Article  CAS  Google Scholar 

  20. Gao, S. J. et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nature Med. 2, 925–928 (1996).

    Article  CAS  Google Scholar 

  21. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  22. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  Google Scholar 

  23. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  Google Scholar 

  24. Grey, F., Meyers, H., White, E. A., Spector, D. H. & Nelson, J. A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 3, e163 (2007).

    Article  Google Scholar 

  25. Barth, S. et al. Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res. 36, 666–675 (2008).

    Article  CAS  Google Scholar 

  26. Umbach, J. L. et al. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature (2008).

  27. Ye, F. C. et al. Disruption of Kaposi's sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J. Virol. 78, 11121–11129 (2004).

    Article  CAS  Google Scholar 

  28. Li, Q. H., Zhou, F. C., Ye, F. C. & Gao, S. J. Genetic disruption of KSHV major latent nuclear antigen LANA enhances viral lytic transcriptional program. Virology 379, 234–244 (2008).

    Article  CAS  Google Scholar 

  29. Karin, M. NF-κB and cancer: mechanisms and targets. Mol. Carcinog. 45, 355–361 (2006).

    Article  CAS  Google Scholar 

  30. Chaudhary, P. M., Jasmin, A., Eby, M. T. & Hood, L. Modulation of the NF-κB pathway by virally encoded death effector domains-containing proteins. Oncogene 18, 5738–5746 (1999).

    Article  CAS  Google Scholar 

  31. Matta, H. & Chaudhary, P. M. Activation of alternative NF-κB pathway by human herpes virus 8-encoded Fas-associated death domain-like IL-1 β-converting enzyme inhibitory protein (vFLIP). Proc. Natl Acad. Sci. USA 101, 9399–9404 (2004).

    Article  CAS  Google Scholar 

  32. Mitchell, T. & Sugden, B. Stimulation of NF-κB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69, 2968–2976 (1995).

  33. Yoo, S. M., Zhou, F. C., Ye, F. C., Pan, H. Y. & Gao, S. J. Early and sustained expression of latent and host modulating genes in coordinated transcriptional program of KSHV productive primary infection of human primary endothelial cells. Virology 343, 47–64 (2005).

    Article  CAS  Google Scholar 

  34. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179 (2005).

    Article  Google Scholar 

  35. Xie, J. P., Ajibade, A. O., Ye, F. C., Kuhne, K. & Gao, S. J. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 371, 139–154 (2008).

    Article  CAS  Google Scholar 

  36. Gottwein, E., Cai, X. & Cullen, B. R. A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J. Virol. 80, 5321–5326 (2006).

    Article  CAS  Google Scholar 

  37. Gao, S. J. et al. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N. Engl. J. Med. 335, 233–241 (1996).

    Article  CAS  Google Scholar 

  38. Wang, X. P. et al. Characterization of the promoter region of the viral interferon regulatory factor encoded by Kaposi's sarcoma-associated herpesvirus. Oncogene 20, 523–530 (2001).

    Article  CAS  Google Scholar 

  39. Kurreck, J., Wyszko, E., Gillen, C. & Erdmann, V. A. Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res. 30, 1911–1918 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Izumi and A. Griffiths for their valuable suggestions. This work was supported by grants from the American Cancer Society (#RSG-04-195) and the National Institutes of Health (CA096512, CA124332, CA132637 and DE017333) to S.-J.G, and the National Science Foundation (CCF-0546345) to Y.F.H. C.-G.K. was supported by Konkuk University in 2008.

Author information

Authors and Affiliations

Authors

Contributions

X.F.L. performed genetic, viral replication, NF-κB-related analysis and mRNA suppressor experiments (Figs 1, 2, 3, 4; Supplementary Information, Figs S1–S3, S5, S6 and S8); Z.Q.B. performed bioinformatics, mutagenesis of the miRNA target and part of the genetics and viral replication (Figs 2 and 3; Supplementary Information, Figs S1, S4, S7 and S8); X.P.X. conducted EMSA (Fig. 2); F.C.Y. contributed to viral genetics and northern blotting (Fig. 4; Supplementary Information, Fig. S1); C.G.K. contributed to target identification (Supplementary Information, Fig. S7); Y.F.H. contributed to bioinformatics (Fig. 3); S.J.G. directed, designed and analysed all the experiments and data; X.F.L. and S.J.G. wrote the manuscript.

Corresponding author

Correspondence to Shou-Jiang Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, X., Bai, Z., Ye, F. et al. Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nat Cell Biol 12, 193–199 (2010). https://doi.org/10.1038/ncb2019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing