Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer

Abstract

Signalling through Notch receptors requires ligand-induced cleavage to release the intracellular domain, which acts as a transcriptional activator in the nucleus. Deregulated Notch1 signalling has been implicated in mammary tumorigenesis; however the mechanisms underlying Notch activation in breast cancer remain unclear. Here, we demonstrate that the prolyl-isomerase Pin1 interacts with Notch1 and affects Notch1 activation. Pin1 potentiates Notch1 cleavage by γ-secretase, leading to an increased release of the active intracellular domain and ultimately enhancing Notch1 transcriptional and tumorigenic activity. We found that Notch1 directly induces transcription of Pin1, thereby generating a positive loop. In human breast cancers, we observed a strong correlation between Pin1 overexpression and high levels of activated Notch1. Thus, the molecular circuitry established by Notch1 and Pin1 may have a key role in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 binds to human Notch1.
Figure 2: Pin1 affects Notch1 activity.
Figure 3: Pin1 affects Notch1 processing by γ-secretase.
Figure 4: Pin1 improves cleavage of Notch1 by binding to the STR region.
Figure 5: Pin1 affects human Notch1 tumorigenic activity.
Figure 6: Pin1 is a transcriptional target of Notch1.
Figure 7: Expression of Pin1, Notch1 and HES-1 in breast cancer cell lines and in serial sections of breast carcinoma samples.
Figure 8: Inhibition of Pin1 sensitizes human breast cancer cell lines to GSI treatment.

Similar content being viewed by others

References

  1. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  2. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nature Rev. Cancer 3, 756–767 (2003).

    Article  CAS  Google Scholar 

  3. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  Google Scholar 

  4. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  5. Garber, K. Notch emerges as new cancer drug target. J. Natl Cancer Inst. 99, 1284–1285 (2007).

    Article  Google Scholar 

  6. Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA 103, 3799–3804 (2006).

    Article  CAS  Google Scholar 

  7. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    Article  CAS  Google Scholar 

  8. Weijzen, S. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nature Med. 8, 979–986 (2002).

    Article  CAS  Google Scholar 

  9. Kiaris, H. et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am. J. Pathol. 165, 695–705 (2004).

    Article  CAS  Google Scholar 

  10. Stylianou, S., Clarke, R. B. & Brennan, K. Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66, 1517–1525 (2006).

    Article  CAS  Google Scholar 

  11. Miele, L., Golde, T. & Osborne, B. Notch signaling in cancer. Curr. Mol. Med. 6, 905–918 (2006).

    Article  CAS  Google Scholar 

  12. Yeh, E. S. & Means, A. R. PIN1, the cell cycle and cancer. Nature Rev. Cancer 7, 381–388 (2007).

    Article  CAS  Google Scholar 

  13. Lu, K. P. & Zhou, X. Z. The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nature Rev. Mol. Cell Biol. 8, 904–916 (2007).

    Article  CAS  Google Scholar 

  14. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  15. Mantovani, F. et al. The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Struct. Mol. Biol. 14, 912–920 (2007).

    Article  CAS  Google Scholar 

  16. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  Google Scholar 

  17. Liou, Y. C. et al. Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc. Natl Acad. Sci. USA 99, 1335–1340 (2002).

    Article  CAS  Google Scholar 

  18. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C. & Lu, K. P. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nature Cell Biol. 3, 793–801 (2001).

    Article  CAS  Google Scholar 

  19. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  20. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440, 528–534 (2006).

    Article  CAS  Google Scholar 

  21. Akiyama, H., Shin, R. W., Uchida, C., Kitamoto, T. & Uchida, T. Pin1 promotes production of Alzheimer's amyloid β from β-cleaved amyloid precursor protein. Biochem. Biophys. Res. Commun. 336, 521–529 (2005).

    Article  CAS  Google Scholar 

  22. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D. & Lu, K. P. Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J. 23, 3397–3407 (2004).

    CAS  Google Scholar 

  23. Bao, L. et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  Google Scholar 

  24. Wulf, G., Ryo, A., Liou, Y. C. & Lu, K. P. The prolyl isomerase Pin1 in breast development and cancer. Breast Cancer Res. 5, 76–82 (2003).

    Article  CAS  Google Scholar 

  25. Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

    Article  CAS  Google Scholar 

  26. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  27. Zhou, X. Z. et al. Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol. 6, 873–883 (2000).

    CAS  Google Scholar 

  28. Uchida, T. et al. Pin1 and Par14 pe Cell ptidyl prolyl isomerase inhibitors block cell proliferation. Chem. Biol. 10, 15–24 (2003).

    Article  CAS  Google Scholar 

  29. Rand, M. D. et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol. Cell Biol. 20, 1825–1835 (2000).

    Article  CAS  Google Scholar 

  30. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G.(0) arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  Google Scholar 

  31. Ingles-Esteve, J., Espinosa, L., Milner, L. A., Caelles, C. & Bigas, A. Phosphorylation of Ser2078 modulates the Notch2 function in 32D cell differentiation. J. Biol. Chem. 276, 44873–44880 (2001).

    Article  CAS  Google Scholar 

  32. Ronchini, C. & Capobianco, A. J. Notch(ic)-ER chimeras display hormone-dependent transformation, nuclear accumulation, phosphorylation and CBF1 activation. Oncogene 19, 3914–3924 (2000).

    Article  CAS  Google Scholar 

  33. Maier, M. M. & Gessler, M. Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem. Biophys. Res. Commun. 275, 652–660 (2000).

    Article  CAS  Google Scholar 

  34. Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a gamma-secretase inhibitor. Oncogene (2008).

  35. O'Neill, C. F. et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am. J. Pathol. 171, 1023–1036 (2007).

    Article  CAS  Google Scholar 

  36. Fortini, M. E. γ-secretase-mediated proteolysis in cell-surface-receptor signalling. Nature Rev. Mol. Cell Biol. 3, 673–684 (2002).

    Article  CAS  Google Scholar 

  37. Le Borgne, R., Bardin, A. & Schweisguth, F. The roles of receptor and ligand endocytosis in regulating Notch signaling. Development 132, 1751–1762 (2005).

    Article  CAS  Google Scholar 

  38. Wolfe, M. S. The γ-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45, 7931–7939 (2006).

    Article  CAS  Google Scholar 

  39. Struhl, G. & Adachi, A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol. Cell 6, 625–636 (2000).

    Article  CAS  Google Scholar 

  40. Ramdya, P., Skoch, J., Bacskai, B. J., Hyman, B. T. & Berezovska, O. Activated Notch1 associates with a presenilin-1/γ-secretase docking site. J. Neurochem. 87, 843–850 (2003).

    Article  CAS  Google Scholar 

  41. Schroeter, E. H. et al. A presenilin dimer at the core of the γ-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc. Natl Acad. Sci. USA 100, 13075–13080 (2003).

    Article  CAS  Google Scholar 

  42. Kanwar, R. & Fortini, M. E. Notch signaling: a different sort makes the cut. Curr. Biol. 14, R1043–1045 (2004).

    Article  CAS  Google Scholar 

  43. Chastagner, P., Israel, A. & Brou, C. AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS ONE 3, e2735 (2008).

    Article  Google Scholar 

  44. Takahashi, K. et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 26, 3835–3845 (2007).

    Article  CAS  Google Scholar 

  45. Laws, A. M. & Osborne, B. A. p53 regulates thymic Notch1 activation. Eur. J. Immunol. 34, 726–734 (2004).

    Article  CAS  Google Scholar 

  46. Rae, J. M., Creighton, C. J., Meck, J M., Haddad, B. R. & Johnson, M. D. MDA-MB-435 cells are derived from M14 melanoma cells — a loss for breast cancer but a boon for melanoma research. Breast Cancer Res. Treat. 104, 13–19 (2007).

    Article  Google Scholar 

  47. Lacroix, M. MDA-MB-435 cells are from melanoma, not breast cancer. Cancer Chemother Pharmacol 63, 567 (2008).

    Article  Google Scholar 

  48. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Cancer Metastasis Rev. 8, 82–88 (1989).

  49. Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 4, 844–847 (1998).

    Article  CAS  Google Scholar 

  50. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank LNCIB colleagues, F. Mantovani , L. Collavin and S. Piccolo for critical reading of the manuscript; R. Poddighe for technical support, and M. Stebel and C. Degrassi of the C.S.P.A., University of Trieste. We are grateful to M. Donzelli for generation of the pcDNA3N1ΔE–Flag construct, to T. Sudo for the anti-HES-1 antibody, A. Israel for pGL2-HES-1/LUC, T. Uchida for providing Pin1 knockout mice and to ICGEB for access to their facilities. This work was supported by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC), from Italian University and Research Ministerium (Cofin MIUR), from Friuli-Venezia-Giulia (regional grant), from Association for International Cancer Research (AICR, UK) to G.D.S., and from R01 CA-83736-07 to A.C, AIRC and Fondazione Giancarla Vollaro to S.P. and to Fondazione Monzino and AIRC to P.P.D.F.; M.N. is a FIRC fellow (Fondazione Italiana per la Ricerca sul Cancro). This paper is dedicated to the memory of Stefano Ferrari.

Author information

Authors and Affiliations

Authors

Contributions

A.R., L.T., A.S. and M.N. performed biochemical and cell biology experiments; P.N. performed analysis and evaluation of TMA under the supervision of S.P. and P.P.D.F; A.R. performed part of the in vivo experiments; F.K. and A.C. provided essential reagents and assisted with scientific support; G.D.S. was responsible for the overall project.

Corresponding author

Correspondence to Giannino Del Sal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 848 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rustighi, A., Tiberi, L., Soldano, A. et al. The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11, 133–142 (2009). https://doi.org/10.1038/ncb1822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing