Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Apoptotic histone modification inhibits nuclear transport by regulating RCC1

An Erratum to this article was published on 01 February 2009

This article has been updated

Abstract

A number of signalling pathways have been identified that regulate apoptosis, but the mechanism that initiates apoptosis remains incompletely understood. We have found that the nuclear RanGTP level is diminished during the early stages of apoptosis, which correlates with immobilization of RCC1 on the chromosomes. Furthermore, the expression of phosphomimetic histone H2B or caspase-activated Mst1 immobilizes RCC1 and causes reduction of nuclear RanGTP levels, which leads to inactivation of the nuclear transport machinery. As a consequence, nuclear localization signal (NLS)-containing proteins, including NF-κB–p65, remain bound to importins α and β in the cytoplasm. Knocking down Mst1 allows resumption of nuclear transport and the nuclear entry of NF-κB–p65, which have important roles in rescuing cells from apoptosis. Therefore, we propose that RCC1 reads the histone code created by caspase-activated Mst1 to initiate apoptosis by reducing the level of RanGTP in the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The RanGTP gradient collapses during early stages of apoptosis, whereas the nuclear envelope remains intact.
Figure 2: Immobilization of RCC1 on the chromatin during early stages of apoptosis.
Figure 3: H2BS14 phosphomimetic causes the immobilization of RCC1 on the chromosome and reduction of nuclear RanGTP levels.
Figure 4: RCC1 is trapped on the histone H2B S14 phosphorylated nucleosome with Ran.
Figure 5: Active Mst1 causes the immobilization of RCC1 on the chromosome and the reduction of nuclear RanGTP level.
Figure 6: NLS containing protein remains bound to importins α and β in the cytoplasm as a result of the collapse of RanGTP gradient.
Figure 7: Mst1 RNAi restored nuclear entry of NF-κB and prevented cell death induced by VP16.
Figure 8: Phosphorylation of H2BS14 leads to impairment of nuclear transport.

Similar content being viewed by others

Change history

  • 16 December 2008

    In the version of this article initially published online, the bands showing NF-κB-p50 in Figure 1b, and the columns for GFP and mCherry in Figure 5a were incorrectly labelled. The figure 7b legend should also read “...(15, 5, 2 μl)” instead of “...(10, 5, 2 μl).

References

  1. Ahn, S. H. et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. de Souza, P. M. & Lindsay, M. A. Mammalian Sterile20-like kinase 1 and the regulation of apoptosis. Biochem. Soc. Trans. 32, 485–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Faleiro, L. & Lazebnik, Y. Caspases disrupt the nuclear-cytoplasmic barrier. J. Cell Biol. 151, 951–959 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, H. Y., Wirtz, D. & Zheng, Y. A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J. Cell Biol. 160, 635–644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cushman, I., Stenoien, D. & Moore, M. S. The dynamic association of RCC1 with chromatin is modulated by Ran-dependent nuclear transport. Mol. Biol. Cell 15, 245–255 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li, H. Y., Ng, W. P., Wong, C. H., Iglesias, P. A. & Zheng, Y. Coordination of chromosome alignment and mitotic progression by the chromosome-based Ran signal. Cell Cycle 6, 1886–1895 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Karpinich, N. O., Tafani, M., Rothman, R. J., Russo, M. A. & Farber, J. L. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J. Biol. Chem. 277, 16547–16552 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Nomura, M. et al. Apoptotic cytosol facilitates Bax translocation to mitochondria that involves cytosolic factor regulated by Bcl-2. Cancer Res. 59, 5542–5548 (1999).

    CAS  PubMed  Google Scholar 

  10. Ferrando-May, E. Nucleocytoplasmic transport in apoptosis. Cell Death Differ. (2005).

  11. Miyamoto, Y. et al. Cellular stresses induce the nuclear accumulation of importin α and cause a conventional nuclear import block. J. Cell Biol. 165, 617–623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kodiha, M., Chu, A., Matusiewicz, N. & Stochaj, U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ. 11, 862–874 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kihlmark, M. et al. Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis. Exp. Cell Res. 293, 346–356 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Li, H. Y. & Zheng, Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev. 18, 512–527 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tachibana, T., Imamoto, N., Seino, H., Nishimoto, T. & Yoneda, Y. Loss of RCC1 leads to suppression of nuclear protein import in living cells. J. Biol. Chem. 269, 24542–24545 (1994).

    CAS  PubMed  Google Scholar 

  16. Uchida, S. et al. Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Mol. Cell Biol. 10, 577–584 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walther, T. C. et al. The nucleoporin Nup153 is required for nuclear pore basket formation, nuclear pore complex anchoring and import of a subset of nuclear proteins. EMBO J. 20, 5703–5714 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kihlmark, M., Imreh, G. & Hallberg, E. Sequential degradation of proteins from the nuclear envelope during apoptosis. J. Cell Sci. 114, 3643–3653 (2001).

    CAS  PubMed  Google Scholar 

  19. Kalab, P., Pralle, A., Isacoff, E. Y., Heald, R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Beyond the double helix: writing and reading the histone code. Novartis Found. Symp. 259, 3–21; discussion 17–21, 163–169 (2004).

    CAS  PubMed  Google Scholar 

  21. Glantschnig, H., Rodan, G. A. & Reszka, A. A. Mapping of MST1 kinase sites of phosphorylation. Activation and autophosphorylation. J. Biol. Chem. 277, 42987–42996 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ura, S., Masuyama, N., Graves, J. D. & Gotoh, Y. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl Acad. Sci. USA 98, 10148–10153 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fagerlund, R., Kinnunen, L., Kohler, M., Julkunen, I. & Melen, K. NF-κB is transported into the nucleus by importin α3 and importin α4. J. Biol. Chem. 280, 15942–15951 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Perkins, N. D. NF-κB: tumor promoter or suppressor? Trends Cell Biol. 14, 64–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002).

    Article  CAS  Google Scholar 

  26. Henkel, T. et al. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κ B. Nature 365, 182–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Bischoff, F. R. & Ponstingl, H. Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc. Natl Acad. Sci. USA 88, 10830–10834 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange of Ran by RCC1 and stimulation of hydrolysis of Ran-bound GTP by Ran-GAP1. Methods Enzymol. 257, 135–144 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Richmond, T. J. & Davey, C. A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Komeili, A. & O'Shea, E. K. New perspectives on nuclear transport. Annu. Rev. Genet. 35, 341–364 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Misteli, T., Gunjan, A., Hock, R., Bustin, M. & Brown, D. T. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Karpova, T. S. et al. Fluorescence resonance engergy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microscopy 209, 56–70 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Academic Research Fund, Ministry of Education, Singapore (ARC 7/06) and Biomedical Research Council, A*STAR, Singapore (05/1/22/19/388).

Author information

Authors and Affiliations

Authors

Contributions

C.H.W. carried out most of the experiments; H.C., C.Y.H., S.K.L. and K.S.C. assisted with some experiments; H.Y.L., C.H.W. and C.G.K. conceived and designed the project; H.Y.L, C.G.K., H.C. and C.H.W. wrote the manuscript. All authors participated in data analysis. All authors read and edited the manuscript.

Corresponding authors

Correspondence to Cheng-Gee Koh or Hoi-Yeung Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, CH., Chan, H., Ho, CY. et al. Apoptotic histone modification inhibits nuclear transport by regulating RCC1. Nat Cell Biol 11, 36–45 (2009). https://doi.org/10.1038/ncb1810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing