Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluctuations of intracellular forces during cell protrusion

Abstract

We present a model to estimate intracellular force variations from live-cell images of actin filament (F-actin) flow during protrusion-retraction cycles of epithelial cells in a wound healing response. To establish a mechanistic relationship between force development and cytoskelal dynamics, force fluctuations were correlated with fluctuations in F-actin turnover, flow and F-actin–vinculin coupling. Our analyses suggest that force transmission at focal adhesions requires binding of vinculin to F-actin and integrin (indirectly), which is modulated at the vinculin–integrin but not the vinculin–F-actin interface. Force transmission at focal adhesions is colocalized in space and synchronized in time with transient increases in the boundary force at the cell edge. Surprisingly, the maxima in adhesion and boundary forces lag behind maximal edge advancement by about 40 s. Maximal F-actin assembly was observed about 20 s after maximal edge advancement. On the basis of these findings, we propose that protrusion events are limited by membrane tension and that the characteristic duration of a protrusion cycle is determined by the efficiency in reinforcing F-actin assembly and adhesion formation as tension increases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstruction of intracellular force transients from F-actin network flow.
Figure 2: Prediction of intracellular forces from F-actin network flow in Fig. 1.
Figure 3: Relationship between predicted adhesion forces and F-actin-vinculin interactions during protrusion and retraction.
Figure 4: Predicted adhesion force transients near the leading edge are synchronized in time and colocalized in space with predicted boundary force transients.
Figure 5: Coordination of predicted force transients during cell protrusion with F-actin assembly and edge movement.

Similar content being viewed by others

References

  1. Pollard, T. D. & Borisy, G. B. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  2. Mogilner, A. & Oster, G. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003).

    Article  CAS  Google Scholar 

  3. Dickinson, R. B., Caro, L. & Purich, D. L. Force generation by cytoskeletal filament end-tracking proteins. Biophys. J. 87, 2838–2854 (2004).

    Article  CAS  Google Scholar 

  4. Hu, K., Ji, L., Applegate, K., Danuser, G. & Waterman-Storer, C. M. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  CAS  Google Scholar 

  5. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  Google Scholar 

  6. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–887 (2001).

    Article  CAS  Google Scholar 

  7. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Network contraction model for cell translocation and retrograde flow, in Cell Behaviour: Control and Mechanism of Motility 207–222 (Portland, London, 1999).

    Google Scholar 

  8. Gupton, S. L. & Waterman-Storer, C. M. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125, 1361–1374 (2006).

    Article  CAS  Google Scholar 

  9. Machacek, M. & Danuser, G. Morphodynamic profiling of protrusion phenotypes. Biophys. J. 90, 1439–1452 (2006).

    Article  CAS  Google Scholar 

  10. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  11. Munevar, S., Wang, Y.-L. & Dembo, M. Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80, 1744–1757 (2001).

    Article  CAS  Google Scholar 

  12. Dembo, M., Oliver, T., Ishihara, A. & Jacobson, K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008–2022 (1996).

    Article  CAS  Google Scholar 

  13. Sterba, R. E. & Sheetz, M. P. Basic laser tweezers. Methods Cell Biol. 55, 29–41 (1998).

    Article  CAS  Google Scholar 

  14. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  Google Scholar 

  15. Parekh, S. H., Chaudhuri, O., Theriot, J. A. & Fletcher, D. A. Loading history determines the velocity of actin-network growth. Nature Cell Biol. 7, 1119–1123 (2005).

    Article  CAS  Google Scholar 

  16. Prass, M., Jacobson, K., Mogilner, A. & Radmacher, M. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174, 767–772 (2006).

    Article  CAS  Google Scholar 

  17. Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).

    Article  CAS  Google Scholar 

  18. Ji, L. & Danuser, G. Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation. J. Microsc. 220, 150–167 (2005).

    Article  CAS  Google Scholar 

  19. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    Article  CAS  Google Scholar 

  20. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  21. Delorme, V. et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev. Cell 13, 646–662 (2007).

    Article  CAS  Google Scholar 

  22. McGrath, J. L., Tardy, Y., Dewey, C. F. Jr.,, Meister, J. J. & Hartwig, J. H. Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys. J. 75, 2070–2078. (1998).

    Article  CAS  Google Scholar 

  23. Ponti, A. et al. Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative fluorescent speckle microscopy. Biophys. J. 89, 3456–3469 (2005).

    Article  CAS  Google Scholar 

  24. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002).

    Article  CAS  Google Scholar 

  25. Tseng, Y. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334, 183–192 (2005).

    Article  CAS  Google Scholar 

  26. Mahaffy, R. E., Park, S., Gerde, E., Kas, J. & Shih, C. K. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86, 1777–1793 (2004).

    Article  CAS  Google Scholar 

  27. Tseng, Y., Kole, T. P. & Wirtz, D. Micromechanical mapping of live cells by multiple-particle-tracking microrheology. Biophys. J. 83, 3162–3176 (2002).

    Article  CAS  Google Scholar 

  28. Van Citters, K. M., Hoffman, B. D., Massiera, G. & Crocker, J. C. The role of F-actin and myosin in epithelial cell rheology. Biophys. J. 91, 3946–3956 (2006).

    Article  CAS  Google Scholar 

  29. Bakolitsa, C. et al. Structural basis for vinculin activation at sites of cell adhesion. Nature 430, 583–586 (2004).

    Article  CAS  Google Scholar 

  30. Ponti, A., Vallotton, P., Salmon, W. C., Waterman-Storer, C. M. & Danuser, G. Computational analysis of F-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys. J. 84, 3336–3352 (2003).

    Article  CAS  Google Scholar 

  31. Weisswange, I., Bretschneider, T. & Anderson, K. I. The leading edge is a lipid diffusion barrier. J. Cell Sci. 118, 4375–4380 (2005).

    Article  CAS  Google Scholar 

  32. Prigozhina, N. L. & Waterman-Storer, C. M. Decreased polarity and increased random motility in PtK1 epithelial cells correlate with inhibition of endosomal recycling. J. Cell Sci. 119, 3571–3582 (2006).

    Article  CAS  Google Scholar 

  33. Bretscher, M. S. & Aguado-Velasco, C. Membrane traffic during cell locomotion. Curr. Opin. Cell Biol. 10, 537–541 (1998).

    Article  CAS  Google Scholar 

  34. Hill, T. L. & Kirschner, M. W. Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. Int. Rev. Cytol. 78, 1–125 (1982).

    Article  CAS  Google Scholar 

  35. Gov, N. S. & Gopinathan, A. Dynamics of membranes driven by actin polymerization. Biophys. J. 90, 454–469 (2006).

    Article  CAS  Google Scholar 

  36. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    Article  CAS  Google Scholar 

  37. Waterman-Storer, C. M. Fluorescent speckle microscopy (FSM) of microtubules and actin in living cells. in Current Protocols in Cell Biology. (eds J. S. Bonifacino, M. Dasso, J. B. Harford, J. Lippincott-Schwartz and K. M. Yamada), chapter 4, unit 4.10 (Wiley, New York; 2002).

    Google Scholar 

Download references

Acknowledgements

We thank Clare Waterman and Ke Hu for continued discussion of and encouragement for this study. We gratefully acknowledge funding from NIH R01 GM71868 and the Cell Migration Consortium, Grant No U54 GM064346 from NIGMS.

Author information

Authors and Affiliations

Authors

Contributions

L.J. designed and implemented the force reconstruction algorithm and performed all image analyses; J.L. acquired fluorescent speckle microscopy data of F-actin and myosin II, and assisted with the preparation of the figures and manuscript; G.D. proposed the idea of force reconstruction from speckle movies and wrote the manuscript.

Corresponding author

Correspondence to Gaudenz Danuser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4710 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2870 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2914 kb)

Supplementary Information

Supplementary Movie 3 (MOV 863 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2911 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, L., Lim, J. & Danuser, G. Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol 10, 1393–1400 (2008). https://doi.org/10.1038/ncb1797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing