Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A crucial role of a high mobility group protein HMGA2 in cardiogenesis

Abstract

The high mobility group (HMG) of nuclear proteins regulates expression of many genes through architectural remodelling of the chromatin structure, and formation of multiprotein complexes on promoter/enhancer regions. This leads to the active transcription of their target genes1,2,3. Here we show that HMGA2, a member of the HMGA sub-family of HMG proteins, has a critical function in cardiogenesis. Overexpression of HMGA2 enhanced, whereas siRNA-mediated knockdown of HMGA2 blocked, cardiomyocyte differentiation of the embryonal carcinoma cell line P19CL6. Moreover, overexpression of a dominant-negative HMGA2 or morpholino-mediated knockdown of HMGA2 expression blocked normal heart formation in Xenopus laevis embryos, suggesting that HMGA2 has an important role in cardiogenesis both in vitro and in vivo. Mechanistically, HMGA2 associated with Smad1/4 and showed synergistic trans-activation of the gene for a cardiac transcription factor Nkx2.5; a conserved HMGA2 binding site was required for the promoter activity of Nkx2.5 gene, both in P19CL6 cells and in transgenic Xenopus embryos. Thus, HMGA2 is a positive regulator of Nkx2.5 gene expression and is essential for normal cardiac development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HMGA2 is an essential positive regulator of cardiomyocyte differentiation.
Figure 2: cDNA sequence and expression pattern of XHMGA2.
Figure 3: XHMGA2 is essential for cardiogenesis.
Figure 4: HMGA2 upregulates Nkx2.5 promoter activity in collaboration with Smads.
Figure 5: HMGA2 binding is required for full activation of Nkx2.5 promoter.

Similar content being viewed by others

References

  1. Reeves, R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277, 63–81 (2001).

    Article  CAS  Google Scholar 

  2. Sgarra, R. et al. Nuclear phosphoproteins HMGA and their relationship with chromatin structure and cancer. FEBS Lett. 574, 1–8 (2004).

    Article  CAS  Google Scholar 

  3. Hock, R., Furusawa, T., Ueda, T. & Bustin, M. HMG chromosomal proteins in development and disease. Trends Cell. Biol. 17, 72–79 (2007).

    Article  CAS  Google Scholar 

  4. Srivastava, D. Genetic assembly of the heart: implications for congenital heart disease. Annu. Rev. Physiol. 63, 451–469 (2001).

    Article  CAS  Google Scholar 

  5. Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    Article  CAS  Google Scholar 

  6. Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  Google Scholar 

  7. Foley, A. & Mercola, M. Heart induction: embryology to cardiomyocyte regeneration. Trends Cardiovasc. Med. 14, 121–125 (2004).

    Article  CAS  Google Scholar 

  8. Monzen, K. et al. Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol. Cell. Biol. 19, 7096–105 (1999).

    Article  CAS  Google Scholar 

  9. Yie, J., Merika, M., Munshi, N., Chen, G. & Thanos, D. The role of HMG I(Y) in the assembly and function of the IFN-β enhanceosome. EMBO J. 18, 3074–3089 (1999).

    Article  CAS  Google Scholar 

  10. Reeves, R., Leonard, W. J. & Nissen, M. S. Binding of HMG-I(Y) imparts architectural specificity to a positioned nucleosome on the promoter of the human interleukin-2 receptor α gene. Mol. Cell. Biol. 20, 4666–4679 (2000).

    Article  CAS  Google Scholar 

  11. Brunetti, A., Manfioletti, G., Chiefari, E., Goldfine, I. D. & Foti, D. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). FASEB J. 15, 492–500 (2001).

    Article  CAS  Google Scholar 

  12. Watanabe, M. & Whitman, M. FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126, 5621–5634 (1999).

    CAS  PubMed  Google Scholar 

  13. Schultheiss, T. M., Burch, J. B. & Lassar, A. B. A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev. 11, 451–462 (1997).

    Article  CAS  Google Scholar 

  14. Heldin, C. H., Miyazono, K. & ten Dijke, P. TGFβ signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  Google Scholar 

  15. Liberatore, C. M., Searcy-Schrick, R. D., Vincent, E. B. & Yutzey, K. E. Nkx-2.5 gene induction in mice is mediated by a Smad consensus regulatory region. Dev. Biol. 244, 243–256 (2002).

    Article  CAS  Google Scholar 

  16. Lien, C. L., McAnally, J., Richardson, J. A. & Olson, E. N. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol. 244, 257–266 (2002).

    Article  CAS  Google Scholar 

  17. Schwartz, R. J. & Olson, E. N. Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development 126, 4187–4192 (1999).

    CAS  PubMed  Google Scholar 

  18. Sparrow, D. B. et al. Regulation of the tinman homologues in Xenopus embryos. Dev. Biol. 227, 65–79 (2000).

    Article  CAS  Google Scholar 

  19. Fusco, A. & Fedele, M. Roles of HMGA proteins in cancer. Nature Rev. Cancer 7, 899–910 (2007).

    Article  CAS  Google Scholar 

  20. Battista, S. et al. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res. 59, 4793–4797 (1999).

    CAS  PubMed  Google Scholar 

  21. Arlotta, P. et al. Transgenic mice expressing a truncated form of the high mobility group I-C protein develop adiposity and an abnormally high prevalence of lipomas. J. Biol. Chem. 275, 14394–14400 (2000).

    Article  CAS  Google Scholar 

  22. Zhou, X., Benson, K. F., Ashar, H. R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995).

    Article  CAS  Google Scholar 

  23. Anand, A. & Chada, K. In vivo modulation of Hmgic reduces obesity. Nature Genet. 24, 377–380 (2000).

    Article  CAS  Google Scholar 

  24. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).

    Article  CAS  Google Scholar 

  25. Korchynskyi, O. & ten Dijke, P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277, 4883–4891 (2002).

    Article  CAS  Google Scholar 

  26. Breckenridge, R. A., Mohun, T. J. & Amaya, E. A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev. Biol. 232, 191–203 (2001).

    Article  CAS  Google Scholar 

  27. Hosoda, T. et al. A novel myocyte-specific gene Midori promotes the differentiation of P19CL6 cells into cardiomyocytes. J. Biol. Chem. 276, 35978–35989 (2001).

    Article  CAS  Google Scholar 

  28. Naito, A. T. et al. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc. Natl Acad. Sci. USA 103, 19812–19817 (2006).

    Article  CAS  Google Scholar 

  29. Michiue, T. et al. XIdax, an inhibitor of the canonical Wnt pathway, is required for anterior neural structure formation in Xenopus. Dev. Dyn. 230, 79–90 (2004).

    Article  CAS  Google Scholar 

  30. Hiroi, Y. et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genet. 28, 276–280 (2001).

    Article  CAS  Google Scholar 

  31. Kroll, K. L. & Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Manfioletti, P ten Dijke, K. E. Yutzey, M. Whitman and E. Amaya for providing plasmids, and C. Masuo and Y. Itoh for their excellent technical assistance. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, and Health and Labor Sciences Research Grants; an Academic Award of the Mochida Memorial Foundation and Uehara Memorial Foundation (to I. K.); and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to K. M.).

Author information

Authors and Affiliations

Authors

Contributions

K. Monzen, Y. I. and A. T. M. contributed equally to this work; I. K. designed and supervised the research; K. Monzen, Y. I., A. T. M., H. K., Y. H. and D. H. performed experiments; I. S., T. Y., K. Miyazono, M. A. and R. N. contributed new reagents/analytical tools; K. Monzen, Y. I. and A. T. M. analysed the data; K. Monzen, Y. I., I. S. and I. K. prepared the manuscript.

Corresponding author

Correspondence to Issei Komuro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8 and Supplemental Table S1 (PDF 949 kb)

Supplementary Information

Supplementary Movie 1 (MOV 11478 kb)

Supplementary Information

Supplementary Movie 2 (MOV 12805 kb)

Supplementary Information

Supplementary Movie 3 (MOV 11241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monzen, K., Ito, Y., Naito, A. et al. A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat Cell Biol 10, 567–574 (2008). https://doi.org/10.1038/ncb1719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1719

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing