Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dishevelled promotes axon differentiation by regulating atypical protein kinase C

Abstract

The atypical protein kinase C (aPKC) in complex with PAR3 and PAR6 is required for axon-dendrite differentiation, but the upstream factors responsible for regulating its activity are largely unknown. Here, we report that in cultured hippocampal neurons aPKC is directly regulated by Dishevelled (Dvl), an immediate downstream effector of Wnt. We found that downregulation of Dvl abrogated axon differentiation, whereas Dvl overexpression resulted in multiple axon formation. Interestingly, Dvl was associated with aPKC and this interaction resulted in aPKC stabilization and activation. Furthermore, the multiple axon formation resulting from Dvl overexpression was attenuated by expressing a dominant–negative aPKC in these neurons and overexpression of aPKC prevented the loss of axon caused by Dvl downregulation. Finally, Wnt5a, a noncanonical Wnt, activated aPKC and promoted axon differentiation. The Wnt5a effect on axon differentiation was attenuated by downregulating Dvl or inhibiting aPKC. Thus, Dvl–aPKC interaction can promote axon differentiation mediated by the PAR3–PAR6–aPKC complex.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of Dvl in cultured hippocampal neurons.
Figure 2: Dvl effect on axon differentiation.
Figure 3: Dvl interaction with the atypical protein kinase C.
Figure 4: Domain mapping for Dvl–aPKC interaction.
Figure 5: Dvl activation of PKCζ and inhibition of MARK2.
Figure 6: The effect of dominant-negative aPKC on Dvl-induced axon differentiation.
Figure 7: Overexpression of aPKC counteracts the polarity defect caused by Dvl suppression.
Figure 8: Wnt5a promotes neuronal polarization.

Similar content being viewed by others

References

  1. Shi, S. H., Jan, L. Y. & Jan, Y. N. Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63–75 (2003).

    Article  CAS  Google Scholar 

  2. Nishimura, T. et al. Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nature Cell Biol. 6, 328–334 (2004).

    Article  CAS  Google Scholar 

  3. Nishimura, T. et al. PAR-6–PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nature Cell Biol. 7, 270–277 (2005).

    Article  CAS  Google Scholar 

  4. Chen, Y. M. et al. Microtubule affinity-regulating kinase 2 functions downstream of the PAR-3/PAR-6/atypical PKC complex in regulating hippocampal neuronal polarity. Proc. Natl Acad. Sci. USA 103, 8534–8539 (2006).

    Article  CAS  Google Scholar 

  5. de Anda, F. C. et al. Centrosome localization determines neuronal polarity. Nature 436, 704–708 (2005).

    Article  Google Scholar 

  6. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  Google Scholar 

  7. Wallingford, J. B. & Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005).

    Article  CAS  Google Scholar 

  8. Hilliard, M. A. & Bargmann, C. I. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev. Cell 10, 379–390 (2006).

    CAS  Google Scholar 

  9. Prasad, B. C. & Clark, S. G. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133, 1757–1766 (2006).

    Article  CAS  Google Scholar 

  10. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001).

    Article  CAS  Google Scholar 

  11. Bohm, H., Brinkmann, V., Drab, M., Henske, A. & Kurzchalia, T. V. Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Curr. Biol. 7, 603–606 (1997).

    Article  CAS  Google Scholar 

  12. Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).

    Article  CAS  Google Scholar 

  13. Dollar, G. L., Weber, U., Mlodzik, M. & Sokol, S. Y. Regulation of Lethal giant larvae by Dishevelled. Nature 437, 1376–1380 (2005).

    Article  CAS  Google Scholar 

  14. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  15. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  Google Scholar 

  16. Dotti, C. G. & Banker, G. A. Experimentally induced alteration in the polarity of developing neurons. Nature 330, 254–256 (1987).

    Article  CAS  Google Scholar 

  17. Yoshimura, T. et al. GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120, 137–149 (2005).

    Article  CAS  Google Scholar 

  18. Jiang, H., Guo, W., Liang, X. & Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 120, 123–135 (2005).

    CAS  PubMed  Google Scholar 

  19. Schwamborn, J. C. & Puschel, A. W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nature Neurosci. 7, 923–929 (2004).

    Article  CAS  Google Scholar 

  20. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  21. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  22. Moscat, J. & Diaz-Meco, M. T. The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep. 1, 399–403 (2000).

    Article  CAS  Google Scholar 

  23. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    Article  CAS  Google Scholar 

  24. Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol. 14, 736–741 (2004).

    Article  CAS  Google Scholar 

  25. Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M. & Mandelkow, E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89, 297–308 (1997).

    Article  CAS  Google Scholar 

  26. Macara, I. G. Parsing the polarity code. Nature Rev. Mol. Cell. Biol. 5, 220–231 (2004).

    Article  CAS  Google Scholar 

  27. Lucas, F. R., Goold, R. G., Gordon-Weeks, P. R. & Salinas, P. C. Inhibition of GSK-3β leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J. Cell Sci. 111, 1351–1361 (1998).

    CAS  PubMed  Google Scholar 

  28. Krylova, O., Messenger, M. J. & Salinas, P. C. Dishevelled-1 regulates microtubule stability: a new function mediated by glycogen synthase kinase-3β. J. Cell Biol. 151, 83–94 (2000).

    Article  CAS  Google Scholar 

  29. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R. & Moon, R. T. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283 (2000).

    Article  CAS  Google Scholar 

  30. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  Google Scholar 

  31. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  32. Ciani, L. & Salinas, P. C. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nature Rev. Neurosci. 6, 351–362 (2005).

    Article  CAS  Google Scholar 

  33. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell. Dev. Biol. 14, 59–88 (1998).

    Article  CAS  Google Scholar 

  34. Yoshikawa, S., McKinnon, R. D., Kokel, M. & Thomas, J. B. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588 (2003).

    Article  CAS  Google Scholar 

  35. Lyuksyutova, A. I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    Article  CAS  Google Scholar 

  36. Lu, W., Yamamoto, V., Ortega, B. & Baltimore, D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108 (2004).

    Article  CAS  Google Scholar 

  37. Zou, Y. Wnt signaling in axon guidance. Trends Neurosci. 27, 528–532 (2004).

    Article  CAS  Google Scholar 

  38. Rosso, S. B., Sussman, D., Wynshaw-Boris, A. & Salinas, P. C. Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nature Neurosci. 8, 34–42 (2005).

    Article  CAS  Google Scholar 

  39. Burden, S. J. Wnts as retrograde signals for axon and growth cone differentiation. Cell 100, 495–497 (2000).

    Article  CAS  Google Scholar 

  40. Salinas, P. C. Synaptogenesis: Wnt and TGF-β take centre stage. Curr. Biol. 13, R60–R62 (2003).

    Article  CAS  Google Scholar 

  41. Yan, D., Guo, L. & Wang, Y. Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J. Cell Biol. 174, 415–424 (2006).

    Article  CAS  Google Scholar 

  42. Kishi, M., Pan, Y. A., Crump, J. G. & Sanes, J. R. Mammalian SAD kinases are required for neuronal polarization. Science 307, 929–932 (2005).

    Article  CAS  Google Scholar 

  43. Luo, Z. G. et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35, 489–505 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. M. Poo and L. Mei for their critical reading of the manuscript, to X. He, C. Liu, I. Macara, H. Piwnica-Worms, Y. Rao, T. Saito, Y. Z. Wang, Z. Ke and J. Luo for reagents, and to Q. Hu for the assistance in imaging analysis. This work was supported in part by grants from National Natural Science Foundation of China (Nos. 90408026), Shanghai Science and Technology Development Foundation (03JC14078), “973” Program (2006CB806600), and Key State Research Program (2006CB943903) to Z.G.L.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experimental work and data analysis. Z.-G.L planned the project and wrote the manuscript.

Corresponding author

Correspondence to Zhen-Ge Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplememtary Figures S1, S2, S3, S4 and S5 (PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zhu, J., Yang, GY. et al. Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nat Cell Biol 9, 743–754 (2007). https://doi.org/10.1038/ncb1603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing