Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells

Abstract

The pluripotency of embryonic stem (ES) cells is thought to be maintained by a few key transcription factors, including Oct3/4 and Sox2. The function of Oct3/4 in ES cells has been extensively characterized, but that of Sox2 has yet to be determined. Sox2 can act synergistically with Oct3/4 in vitro to activate Oct–Sox enhancers, which regulate the expression of pluripotent stem cell-specific genes, including Nanog, Oct3/4 and Sox2 itself. These findings suggest that Sox2 is required by ES cells for its Oct–Sox enhancer activity. Using inducible Sox2-null mouse ES cells, we show that Sox2 is dispensable for the activation of these Oct–Sox enhancers. In contrast, we demonstrate that Sox2 is necessary for regulating multiple transcription factors that affect Oct3/4 expression and that the forced expression of Oct3/4 rescues the pluripotency of Sox2-null ES cells. These results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sox2-null ES cells differentiate into trophoectoderm-like cells.
Figure 2: Sox2-null ES cells express trophoectoderm marker genes.
Figure 3: Oct–Sox enhancer dependent genes are slowly downregulated on Sox2-null induction.
Figure 4: Redundancy of Sox factors on Oct–Sox enhancers.
Figure 5: Sox2-null can be rescued by the forced expression of Oct3/4.
Figure 6: Characterization of rescued Sox2-null cells.
Figure 7: Schematic representation of a model of a transcriptional network governed by Oct3/4 and Sox factors.

Similar content being viewed by others

References

  1. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007).

    Article  CAS  Google Scholar 

  2. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  Google Scholar 

  3. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  4. Avilion, A. A. et al. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140 (2003).

    Article  CAS  Google Scholar 

  5. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  6. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  Google Scholar 

  7. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet 24, 372–376 (2000).

    Article  CAS  Google Scholar 

  8. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  9. Yuan, H., Corbi, N., Basilico, C. & Dailey, L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev. 9, 2635–2645 (1995).

    Article  CAS  Google Scholar 

  10. Nishimoto, M., Fukushima, A., Okuda, A. & Muramatsu, M. The gene for the embryonic stem cell coactivator UTF1 carries a regulatory element which selectively interacts with a complex composed of Oct-3/4 and Sox-2. Mol. Cell. Biol. 19, 5453–5465 (1999).

    Article  CAS  Google Scholar 

  11. Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol. 23, 2699–2708 (2003).

    Article  CAS  Google Scholar 

  12. Nakatake, Y. et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782 (2006).

    Article  CAS  Google Scholar 

  13. Kuroda, T. et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol. Cell. Biol. 25, 2475–2485 (2005).

    Article  CAS  Google Scholar 

  14. Rodda, D. J. et al. Transcriptional regulation of nanog by OCT4 and SOX2. J. Biol. Chem. 280, 24731–24737 (2005).

    Article  CAS  Google Scholar 

  15. Okumura-Nakanishi, S., Saito, M., Niwa, H. & Ishikawa, F. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J. Biol. Chem. 280, 5307–5317 (2005).

    Article  CAS  Google Scholar 

  16. Tomioka, M. et al. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res. 30, 3202–3213 (2002).

    Article  CAS  Google Scholar 

  17. Chew, J. L. et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol. Cell. Biol. 25, 6031–6046 (2005).

    Article  CAS  Google Scholar 

  18. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  Google Scholar 

  19. Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006).

    Article  CAS  Google Scholar 

  20. Maruyama, M., Ichisaka, T., Nakagawa, M. & Yamanaka, S. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. J. Biol. Chem. 280, 24371–24379 (2005).

    Article  CAS  Google Scholar 

  21. Wilkinson, D. G., Bhatt, S. & Herrmann, B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  CAS  Google Scholar 

  22. Yang, D. H. et al. Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis. Dev. Biol 251, 27–44 (2002).

    Article  CAS  Google Scholar 

  23. Matoba, R. et al. Dissecting oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 1, e26 (2006).

    Article  Google Scholar 

  24. Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R. & Kondoh, H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–2532 (1998).

    CAS  PubMed  Google Scholar 

  25. Nishiguchi, S., Wood, H., Kondoh, H., Lovell-Badge, R. & Episkopou, V. Sox1 directly regulates the γ-crystallin genes and is essential for lens development in mice. Genes Dev. 12, 776–781 (1998).

    Article  CAS  Google Scholar 

  26. Wiebe, M. S., Nowling, T. K. & Rizzino, A. Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity. J. Biol. Chem. 278, 17901–17911 (2003).

    Article  CAS  Google Scholar 

  27. Bowles, J., Schepers, G. & Koopman, P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255 (2000).

    Article  CAS  Google Scholar 

  28. Gu, P. et al. Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development. Mol. Cell. Biol. 25, 3492–3505 (2005).

    Article  CAS  Google Scholar 

  29. Schoorlemmer, J. et al. Characterization of a negative retinoic acid response element in the murine Oct4 promoter. Mol. Cell. Biol. 14, 1122–1136 (1994).

    Article  CAS  Google Scholar 

  30. Schilham, M. W. et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380, 711–714 (1996).

    Article  CAS  Google Scholar 

  31. Sock, E. et al. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol. Cell. Biol. 24, 6635–6644 (2004).

    Article  CAS  Google Scholar 

  32. Ben-Shushan, E., Sharir, H., Pikarsky, E. & Bergman, Y. A dynamic balance between ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:retinoid X receptor heterodimers regulates Oct-3/4 expression in embryonal carcinoma cells. Mol. Cell. Biol. 15, 1034–1048 (1995).

    Article  CAS  Google Scholar 

  33. Gu, P. et al. Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol. Cell. Biol. 25, 8507–8519 (2005).

    Article  CAS  Google Scholar 

  34. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

    Article  CAS  Google Scholar 

  35. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  36. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  37. De Robertis, E. M. Developmental biology. Dismantling the organizer. Nature 374, 407–408 (1995).

    Article  CAS  Google Scholar 

  38. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  Google Scholar 

  39. Rogers, M. B., Hosler, B. A. & Gudas, L. J. Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 113, 815–824 (1991).

    CAS  PubMed  Google Scholar 

  40. Rathjen, J. et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J. Cell Science 112, 601–612 (1999).

    CAS  PubMed  Google Scholar 

  41. Lupton, S. D., Brunton, L. L., Kalberg, V. A. & Overell, R. W. Dominant positive and negative selection using a hygromycin phosphotransferase-thymidine kinase fusion gene. Mol. Cell. Biol. 11, 3374–3378 (1991).

    Article  CAS  Google Scholar 

  42. Baron, U., Gossen, M. & Bujard, H. Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res. 25, 2723–2729 (1997).

    Article  CAS  Google Scholar 

  43. Masui, S. et al. An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res. 33, e43 (2005).

    Article  Google Scholar 

  44. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    Article  CAS  Google Scholar 

  45. Bevis, B. J. & Glick, B. S. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature Biotechnol. 20, 83–87 (2002).

    Article  CAS  Google Scholar 

  46. Niwa, H., Masui, S., Chambers, I., Smith, A. G. & Miyazaki, J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526–1536 (2002).

    Article  CAS  Google Scholar 

  47. Nakatake, Y. et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782 (2006).

    Article  CAS  Google Scholar 

  48. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  49. Sharov, A. A., Dudekula, D. B. & Ko, M. S. A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21, 2548–2549 (2005).

    Article  CAS  Google Scholar 

  50. Carter, M. G. et al. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray. Genome Biol. 6, R61 (2005).

    Article  Google Scholar 

  51. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bujard (University of Heidelberg) for providing the plasmid pUHD-tetR/VP16(FF); I. R. Lemischka (Princeton University) for the Sox2 knockdown cell lines; S. Miyagi for RNA samples from E11.5 embryos; and Y. Piao for microarray hybridization. This work was supported in part by grant-in-aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to S.M.) and by a RIKEN grant and grants for the 21st Century COE Program, from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Leading Project (to H.N.). H.N. also received funding from the CREST program of the Japan Science and Technology Agency. The work was also supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinji Masui or Hitoshi Niwa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 234 kb)

Supplementary Information

Supplementary Table S1 (PDF 770 kb)

Supplementary Information

Supplementary Table S2 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masui, S., Nakatake, Y., Toyooka, Y. et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9, 625–635 (2007). https://doi.org/10.1038/ncb1589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing