Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myc-binding-site recognition in the human genome is determined by chromatin context

Abstract

Large-scale chromatin immunoprecipitation (ChIP) studies have been effective in unravelling the distribution of DNA-binding transcription factors along eukaryotic genomes1, but specificity determinants remain elusive. Gene-regulatory regions display distinct histone variants and modifications (or marks)2,3,4,5,6,7,8,9,10,11,12,13,14,15. An attractive hypothesis is that these marks modulate protein recognition16,17,18, but whether or not this applies to transcription factors remains unknown. Based on large-scale datasets2,19,20,21 and quantitative ChIP, we dissect the correlations between 35 histone marks and genomic binding by the transcription factor Myc. Our data reveal a relatively simple combinatorial organization of histone marks in human cells, with a few main groups of marks clustering on distinct promoter populations. A stretch of chromatin bearing high H3 K4/K79 methylation and H3 acetylation (or 'euchromatic island'), which is generally associated with a pre-engaged basal transcription machinery12,13, is a strict pre-requisite for recognition of any target site by Myc (whether the consensus CACGTG or an alternative sequence)22. These data imply that tethering of a transcription factor to restricted chromatin domains is rate-limiting for sequence-specific DNA binding in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering analysis of histone marks on human promoters.
Figure 2: Myc binding is correlated with pre-existing H3K4me3.
Figure 3: Analysis of CpG methylation at Myc-binding sites.
Figure 4: qChIP analysis of genomic sites identified in ChIP-chip datasets.
Figure 5: Pre-loaded RNA polII and menin correlate with H3K4me3 and Myc-binding affinity.

Similar content being viewed by others

References

  1. Blais, A. & Dynlacht, B. Constructing transcriptional regulatory networks. Genes Dev. 19, 1499–1511 (2005).

    Article  CAS  Google Scholar 

  2. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  Google Scholar 

  3. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nature Cell Biol. 6, 73–77 (2004).

    Article  CAS  Google Scholar 

  4. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  Google Scholar 

  5. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  Google Scholar 

  6. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  Google Scholar 

  7. Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol. 25, 1804–1820 (2005).

    Article  CAS  Google Scholar 

  8. Wirbelauer, C., Bell, O. & Schubeler, D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev. 19, 1761–1766 (2005).

    Article  CAS  Google Scholar 

  9. Liang, G. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl Acad. Sci. USA 101, 7357–7362 (2004).

    Article  CAS  Google Scholar 

  10. Liu, C. L. et al. Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3, e328 (2005).

    Article  Google Scholar 

  11. Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  12. Kim, T. H. et al. A high-resolution map of active promoters in the human genome. Nature 436, 876–880 (2005).

    Article  CAS  Google Scholar 

  13. Guenther, M. G. et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc. Natl Acad. Sci. USA 102, 8603–8608 (2005).

    Article  CAS  Google Scholar 

  14. Roh, T. Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev. 19, 542–552 (2005).

    Article  CAS  Google Scholar 

  15. Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    Article  CAS  Google Scholar 

  16. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  17. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  Google Scholar 

  18. Schreiber, S. L. & Bernstein, B. E. Signaling network model of chromatin. Cell 111, 771–778 (2002).

    Article  CAS  Google Scholar 

  19. Fernandez, P. et al. Genomic targets of the human c-Myc protein. Genes Dev 17, 1115–1129 (2003).

    Article  CAS  Google Scholar 

  20. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  Google Scholar 

  21. Li, Z. et al. A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl Acad. Sci. USA 100, 8164–8169 (2003).

    Article  CAS  Google Scholar 

  22. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  23. McKinney, K., Mattia, M., Gottifredi, V. & Prives, C. p53 linear diffusion along DNA requires its C terminus. Mol. Cell 16, 413–424 (2004).

    Article  CAS  Google Scholar 

  24. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  Google Scholar 

  25. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  Google Scholar 

  26. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  27. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  28. Vire, E. et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874 (2006).

    Article  CAS  Google Scholar 

  29. Prendergast, G. C., Lawe, D. & Ziff, E. B. Association of Myn, the murine homolog of Max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65, 395–407 (1991).

    Article  CAS  Google Scholar 

  30. Perini, G., Diolaiti, D., Porro, A. & Della Valle, G. In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc. Natl Acad. Sci. USA 102, 12117–12122 (2005).

    Article  CAS  Google Scholar 

  31. Yokoyama, A. et al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol 24, 5639–5649 (2004).

    Article  CAS  Google Scholar 

  32. Eberhardy, S. R. & Farnham, P. J. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J. Biol. Chem. 276, 48562–48571 (2001).

    Article  CAS  Google Scholar 

  33. Bouchard, C., Marquardt, J., Bras, A., Medema, R. H. & Eilers, M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J. 23, 2830–2840 (2004).

    Article  CAS  Google Scholar 

  34. de la Cruz, X., Lois, S., Sanchez-Molina, S. & Martinez-Balbas, M. A. Do protein motifs read the histone code? Bioessays 27, 164–175 (2005).

    Article  CAS  Google Scholar 

  35. Sierra, J., Yoshida, T., Joazeiro, C. A. & Jones, K. A. The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev. 20, 586–600 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Natoli, A. Musacchio and M. Eilers for critical reading of the manuscript; I. Dellino, S. Segalla and M. Cirò for stimulating discussions throughout this work; A. Verrecchia and F. Contegno for laboratory set-up and management; P.-G. Pelicci for his support; B. Ren for sharing sequence information; B. Bernstein for communicating results prior to publication; and T. Jenuwein for providing the antibodies as a gift. This work was supported by the Italian Association for Cancer Research (AIRC).

Author information

Authors and Affiliations

Authors

Contributions

E.G. and B.A. designed the study and interpreted the data. E.G. and F.M. performed cell culture, ChIP and RNA extractions. G.F. and L.L. performed bioinformatics and statistical analysis. E.G., F.M., L.T., V.D. and L.B. performed quantitative PCR. G.Z. and C.N. performed the bisulphite sequencing.

Corresponding author

Correspondence to Bruno Amati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 3422 kb)

Supplementary Information (XLS 1064 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guccione, E., Martinato, F., Finocchiaro, G. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 8, 764–770 (2006). https://doi.org/10.1038/ncb1434

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing