Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export

Abstract

Regulation of nuclear mRNA export is critical for proper eukaryotic gene expression. A key step in this process is the directional translocation of mRNA–ribonucleoprotein particles (mRNPs) through nuclear pore complexes (NPCs) that are embedded in the nuclear envelope1. Our previous studies in Saccharomyces cerevisiae defined an in vivo role for inositol hexakisphosphate (InsP6) and NPC-associated Gle1 in mRNA export2. Here, we show that Gle1 and InsP6 act together to stimulate the RNA-dependent ATPase activity of the essential DEAD-box protein Dbp5. Overexpression of DBP5 specifically suppressed mRNA export and growth defects of an ipk1 nup42 mutant defective in InsP6 production and Gle1 localization. In vitro kinetic analysis showed that InsP6 significantly increased Dbp5 ATPase activity in a Gle1-dependent manner and lowered the effective RNA concentration for half-maximal ATPase activity. Gle1 alone had minimal effects. Maximal InsP6 binding required both Dbp5 and Gle1. It has been suggested that Dbp5 requires unidentified cofactors3,4. We now propose that Dbp5 activation at NPCs requires Gle1 and InsP6. This would facilitate spatial control of the remodelling of mRNP protein composition during directional transport and provide energy to power transport cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DBP5 overexpression rescues the mRNA export and growth defects of the ipk1Δ nup42Δ mutant.
Figure 2: InsP6 and Gle1 stimulate Dbp5 ATPase activity.
Figure 3: InsP6 binding in the presence of Gle1 and Dbp5.
Figure 4: Schematic representation of how Gle1–InsP6 activation of Dbp5 may trigger mRNP remodelling at a NPC cytoplasmic-face scaffold.

Similar content being viewed by others

References

  1. Moore, M. J. From birth to death: The complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  Google Scholar 

  2. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).

    Article  CAS  Google Scholar 

  3. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).

    Article  CAS  Google Scholar 

  4. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN–Nup159p. EMBO J. 18, 4332–4347 (1999).

    Article  CAS  Google Scholar 

  5. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).

    Article  CAS  Google Scholar 

  6. Rodriguez, M. S., Dargemont, C. & Stutz, F. Nuclear export of RNA. Biol. Cell 96, 639–655 (2004).

    Article  CAS  Google Scholar 

  7. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell Biol. 5, 232–241 (2004).

    Article  CAS  Google Scholar 

  8. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p–Dbp5p is a shuttling transport factor that interacts with Rat7p–Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).

    Article  CAS  Google Scholar 

  9. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p–Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).

    Article  CAS  Google Scholar 

  10. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    Article  CAS  Google Scholar 

  11. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).

    Article  CAS  Google Scholar 

  12. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).

    Article  CAS  Google Scholar 

  13. Kendirgi, F., Barry, D. M., Griffis, E. R., Powers, M. A. & Wente, S. R. An essential role for hGle1 nucleocytoplasmic shuttling in mRNA export. J. Cell Biol. 160, 1029–1040 (2003).

    Article  CAS  Google Scholar 

  14. Odom, A. R., Stahlberg, A., Wente, S. R. & York, J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026–2029 (2000).

    Article  CAS  Google Scholar 

  15. York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D. & York, J. D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269 (2005).

    Article  CAS  Google Scholar 

  16. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    Article  CAS  Google Scholar 

  17. Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 306, 1534–1539 (2005).

    Article  Google Scholar 

  18. Miller, A. L., Suntharalingam, M., Johnson, S. L., Audhya, A., Emr, S. D. & Wente, S. R. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1 mRNA export pathway. J. Biol. Chem. 279, 51022–51032 (2004).

    Article  CAS  Google Scholar 

  19. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p–Dbp5p and a new protein Ymr 255p. EMBO J. 18, 5761–5777 (1999).

    Article  CAS  Google Scholar 

  20. Rollenhagen, C., Hodge, C. A. & Cole, C. N. The nuclear pore complex and the DEAD box protein Rat8p–Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock. Mol. Cell Biol. 24, 4869–4879 (2004).

    Article  CAS  Google Scholar 

  21. Tseng-Rogenski, S. S. et al. Functional conservation of Dhh1p, a cytoplasmic DExD–H-box protein present in large complexes. Nucleic Acids Res. 31, 4995–5002 (2003).

    Article  CAS  Google Scholar 

  22. Strawn, L. A., Shen, T. & Wente, S. R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001).

    Article  CAS  Google Scholar 

  23. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA-protein interaction by a DExH–D RNA helicase. Science 291, 121–125 (2001).

    Article  CAS  Google Scholar 

  24. Fairman, M. E. et al. Protein displacement by DExH–D 'RNA helicases' without duplex unwinding. Science 304, 730–734 (2004).

    Article  CAS  Google Scholar 

  25. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p–Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    Article  CAS  Google Scholar 

  26. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    Article  CAS  Google Scholar 

  27. Kendirgi, F., Rexer, D. J., Alcazar-Roman, A. R., Onishko, H. M. & Wente, S. R. Interaction between the shuttling mRNA export factor Gle1 and the nucleoporin hCG1: a conserved mechanism in the export of Hsp70 mRNA. Mol. Biol. Cell 16, 4304–4315 (2005).

    Article  CAS  Google Scholar 

  28. Rayala, H. J., Kendirgi, F., Barry, D. M., Majerus, P. W. & Wente, S. R. The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155. Mol. Cell. Proteomics 3, 145–155 (2004).

    Article  CAS  Google Scholar 

  29. Suntharalingam, M., Alcazar-Roman, A. R. & Wente, S. R. Nuclear export of the yeast mRNA-binding protein Nab2 is linked to a direct interaction with Gfd1 and to Gle1 function. J. Biol. Chem. 279, 35384–35391 (2004).

    Article  CAS  Google Scholar 

  30. Shears, S. B. Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 13, 151–158 (2001).

    Article  CAS  Google Scholar 

  31. Ives, E. B., Nichols, J., Wente, S. R. & York, J. D. Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275, 36575–36583 (2000).

    Article  CAS  Google Scholar 

  32. Shears, S. B. in Signaling by Inositides: A Practical Approach (ed. Hames, B. D.) 134–135 (Oxford Univ. Press, Leeds, 1997).

    Google Scholar 

  33. Windgassen, M. et al. Yeast shuttling SR proteins Npl3p, Gbp2p, and Hrb1p are part of the translating mRNPs, and Npl3p can function as a translational repressor. Mol. Cell. Biol. 24, 10479–10491 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Cole, J. York, R. Emeson and M. Fournier for plasmids, strains and reagents, and J. York and members of the Wente and Hardy labs for critical discussions and comments. This work was supported by a National Institutes of Health (NIH) grant (R01–GM51219) to S.R.W. and an National Research Service Award (NSRA) NIH Virus, Nucleic Acids and Cancer position (5T32–CA009385) and Ruth Kirschstein NIH NSRA (1F32–GM075459) to E.J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Wente.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods and Supplementary Table S1 (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcázar-Román, A., Tran, E., Guo, S. et al. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8, 711–716 (2006). https://doi.org/10.1038/ncb1427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing