Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of Notch signalling by non-visual β-arrestin

An Erratum to this article was published on 02 December 2005

Abstract

Signalling activity of the Notch receptor, which plays a fundamental role in metazoan cell fate determination, is controlled at multiple levels. We uncovered a Notch signal-controlling mechanism that depends on the ability of the non-visual β-arrestin, Kurtz (Krz), to influence the degradation and, consequently, the function of the Notch receptor. We identified Krz as a binding partner of a known Notch-pathway modulator, Deltex (Dx), and demonstrated the existence of a trimeric Notch–Dx–Krz protein complex. This complex mediates the degradation of the Notch receptor through a ubiquitination-dependent pathway. Our results establish a novel mode of regulation of Notch signalling and define a new function for non-visual β-arrestins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Krz and Dx proteins interact.
Figure 2: Genetic interactions between dx and krz mutations.
Figure 3: Krz, Dx and Notch colocalize and form a trimeric complex.
Figure 4: Loss of krz upregulates Notch protein levels.
Figure 5: Upregulation of markers of Notch activity in krz mutant clones.
Figure 6: Coexpression of Krz and Dx results in the reduction of Notch protein levels in vivo.
Figure 7: Krz and Dx synergistically affect the stability of Notch.
Figure 8: Krz and Dx downregulate Notch activity and enhance Notch ubiquitination.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  2. Harper, J. A., Yuan, J. S., Tan, J. B., Visan, I. & Guidos, C. J. Notch signaling in development and disease. Clin. Genet. 64, 461–472 (2003).

    Article  CAS  Google Scholar 

  3. Ramos, R. G., Grimwade, B. G., Wharton, K. A., Scottgale, T. N. & Artavanis-Tsakonas, S. Physical and functional definition of the Drosophila Notch locus by P element transformation. Genetics 123, 337–348 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Roman, G., He, J. & Davis, R. L. kurtz, a novel nonvisual arrestin, is an essential neural gene in Drosophila. Genetics 155, 1281–1295 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Busseau, I., Diederich, R. J., Xu, T. & Artavanis-Tsakonas, S. A member of the Notch group of interacting loci, deltex encodes a cytoplasmic basic protein. Genetics 136, 585–596 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Diederich, R. J., Matsuno, K., Hing, H. & Artavanis-Tsakonas, S. Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signaling pathway. Development 120, 473–481 (1994).

    CAS  PubMed  Google Scholar 

  7. Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001).

    Article  CAS  Google Scholar 

  8. Matsuno, K., Diederich, R. J., Go, M. J., Blaumueller, C. M. & Artavanis-Tsakonas, S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development 121, 2633–2644 (1995).

    CAS  PubMed  Google Scholar 

  9. Takeyama, K. et al. The BAL-binding protein BBAP and related Deltex family members exhibit ubiquitin-protein isopeptide ligase activity. J. Biol. Chem. 278, 21930–21937 (2003).

    Article  CAS  Google Scholar 

  10. Lefkowitz, R. J. & Shenoy, S. K. Transduction of receptor signals by β-arrestins. Science 308, 512–517 (2005).

    Article  CAS  Google Scholar 

  11. Luttrell, L. M. & Lefkowitz, R. J. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell Sci. 115, 455–465 (2002).

    CAS  PubMed  Google Scholar 

  12. Chen, W. et al. β-Arrestin 2 mediates endocytosis of type III TGF-β receptor and down-regulation of its signaling. Science 301, 1394–1397 (2003).

    Article  CAS  Google Scholar 

  13. Chen, W. et al. Dishevelled 2 recruits β-arrestin 2 to mediate Wnt5A-stimulated endocytosis of Frizzled 4. Science 301, 1391–1394 (2003).

    Article  CAS  Google Scholar 

  14. Chen, W. et al. Activity-dependent internalization of smoothened mediated by β-arrestin 2 and GRK2. Science 306, 2257–2260 (2004).

    Article  CAS  Google Scholar 

  15. Lin, F. T., Daaka, Y. & Lefkowitz, R. J. β-Arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J. Biol. Chem. 273, 31640–31643 (1998).

    Article  CAS  Google Scholar 

  16. Wilbanks, A. M. et al. β-arrestin 2 regulates zebrafish development through the hedgehog signaling pathway. Science 306, 2264–2267 (2004).

    Article  CAS  Google Scholar 

  17. Wu, J. H. et al. The adaptor protein β-arrestin2 enhances endocytosis of the low density lipoprotein receptor. J. Biol. Chem. 278, 44238–44245 (2003).

    Article  CAS  Google Scholar 

  18. Gao, H. et al. Identification of β-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-κB pathways. Mol. Cell 14, 303–317 (2004).

    Article  CAS  Google Scholar 

  19. Witherow, D. S., Garrison, T. R., Miller, W. E. & Lefkowitz, R. J. β-Arrestin inhibits NF-κB activity by means of its interaction with the NF-κB inhibitor IκBα. Proc. Natl Acad. Sci. USA 101, 8603–8607 (2004).

    Article  CAS  Google Scholar 

  20. Fromont-Racine, M., Rain, J. C. & Legrain, P. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genet. 16, 277–282 (1997).

    Article  CAS  Google Scholar 

  21. Veraksa, A., Bauer, A. & Artavanis-Tsakonas, S. Analyzing protein complexes in Drosophila with tandem affinity purification-mass spectrometry. Dev. Dyn. 232, 827–834 (2005).

    Article  CAS  Google Scholar 

  22. Xu, T. & Artavanis-Tsakonas, S. Deltex, a locus interacting with the neurogenic genes, Notch, Delta and mastermind in Drosophila melanogaster. Genetics 126, 665–677 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990).

    Article  CAS  Google Scholar 

  24. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  25. de Celis, J. F., Garcia-Bellido, A. & Bray, S. J. Activation and function of Notch at the dorsal-ventral boundary of the wing imaginal disc. Development 122, 359–369 (1996).

    CAS  PubMed  Google Scholar 

  26. Neumann, C. J. & Cohen, S. M. A hierarchy of cross-regulation involving Notch, wingless, vestigial and cut organizes the dorsal/ventral axis of the Drosophila wing. Development 122, 3477–3485 (1996).

    CAS  PubMed  Google Scholar 

  27. Tsuda, L., Nagaraj, R., Zipursky, S. L. & Banerjee, U. An EGFR/Ebi/Sno pathway promotes delta expression by inactivating Su(H)/SMRTER repression during inductive notch signaling. Cell 110, 625–637 (2002).

    Article  CAS  Google Scholar 

  28. Hori, K. et al. Drosophila Deltex mediates Suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 131, 5527–5537 (2004).

    Article  CAS  Google Scholar 

  29. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-arrestin. Science 294, 1307–1313 (2001).

    Article  CAS  Google Scholar 

  30. Girnita, L. et al. β-Arrestin is crucial for ubiquitination and down-regulation of the insulin-like growth factor-1 receptor by acting as adaptor for the MDM2 E3 ligase. J. Biol. Chem. 280, 24412–24419 (2005).

    Article  CAS  Google Scholar 

  31. Matsuno, K. et al. Human deltex is a conserved regulator of Notch signalling. Nature Genet. 19, 74–78 (1998).

    Article  CAS  Google Scholar 

  32. Yamamoto, N. et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J. Biol. Chem. 276, 45031–45040 (2001).

    Article  CAS  Google Scholar 

  33. Ordentlich, P. et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18, 2230–2239 (1998).

    Article  CAS  Google Scholar 

  34. Ramain, P. et al. Novel Notch alleles reveal a Deltex-dependent pathway repressing neural fate. Curr. Biol. 11, 1729–1738 (2001).

    Article  CAS  Google Scholar 

  35. Izon, D. J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  Google Scholar 

  36. Kiaris, H. et al. Modulation of notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am. J. Pathol. 165, 695–705 (2004).

    Article  CAS  Google Scholar 

  37. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 286, 741–746 (1999).

    Article  CAS  Google Scholar 

  38. Matsuno, K. et al. Involvement of a proline-rich motif and RING-H2 finger of Deltex in the regulation of Notch signaling. Development 129, 1049–1059 (2002).

    CAS  PubMed  Google Scholar 

  39. Shenoy, S. K. & Lefkowitz, R. J. Trafficking patterns of β-arrestin and G protein-coupled receptors determined by the kinetics of β-arrestin deubiquitination. J. Biol. Chem. 278, 14498–14506 (2003).

    Article  CAS  Google Scholar 

  40. Gupta-Rossi, N. et al. Monoubiquitination and endocytosis direct γ-secretase cleavage of activated Notch receptor. J. Cell Biol. 166, 73–83 (2004).

    Article  CAS  Google Scholar 

  41. Oberg, C. et al. The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J. Biol. Chem. 276, 35847–35853 (2001).

    Article  CAS  Google Scholar 

  42. Wu, G. et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol. Cell. Biol. 21, 7403–7415 (2001).

    Article  CAS  Google Scholar 

  43. Cornell, M. et al. The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase. Genetics 152, 567–576 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilkin, M. B. et al. Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr. Biol. 14, 2237–2244 (2004).

    Article  CAS  Google Scholar 

  45. Sakata, T. et al. Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr. Biol. 14, 2228–2236 (2004).

    Article  CAS  Google Scholar 

  46. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  Google Scholar 

  47. Bouwmeester, T. et al. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nature Cell Biol. 6, 97–105 (2004).

    Article  CAS  Google Scholar 

  48. Rebay, I., Fehon, R. G. & Artavanis-Tsakonas, S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329 (1993).

    Article  CAS  Google Scholar 

  49. Nellesen, D. T., Lai, E. C. & Posakony, J. W. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev. Biol. 213, 33–53 (1999).

    Article  CAS  Google Scholar 

  50. Naidoo, N., Song, W., Hunter-Ensor, M. & Sehgal, A. A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank their colleagues D. Finley, M. Baron, R. Lake, M. Kankel and L. Grimm for helpful discussions about the manuscript. We are also grateful to M. Gonzalez-Gaitan and H. Chang for their comments and reagents. krz alleles were kindly provided by R. Davis and the dx152 allele was a gift from K. Matsuno. The anti-EGFR antibody was a gift from P. Rorth. R. Fehon provided a ubiquitination assay protocol and an HS–HA–Ub construct. pMT–Flag–UbWT and pMT–Flag–UbMONO were a gift from S. Bray. The GFP–Sec61 construct was a gift from G. Voeltz. Several fly lines were provided by the Bloomington Drosophila Stock Center, and some of the antibodies used in this work were obtained from the Developmental Studies Hybridoma Bank, Iowa. This work was supported by grants NS26084, GM62931 and CA098402 to S.A.-T. A.V. was supported by a postdoctoral fellowship from the Massachusetts General Hospital Fund for Medical Discovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Artavanis-Tsakonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, A., Veraksa, A., Bauer, A. et al. Regulation of Notch signalling by non-visual β-arrestin. Nat Cell Biol 7, 1191–1201 (2005). https://doi.org/10.1038/ncb1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing