Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An α4 integrin–paxillin–Arf-GAP complex restricts Rac activation to the leading edge of migrating cells

An Erratum to this article was published on 01 May 2005

Abstract

Formation of a stable lamellipodium at the front of migrating cells requires localization of Rac activation to the leading edge. Restriction of α4 integrin phosphorylation to the leading edge limits the interaction of α4 with paxillin to the sides and rear of a migrating cell. The α4–paxillin complex inhibits stable lamellipodia, thus confining lamellipod formation to the cell anterior. Here we report that binding of paxillin to the α4 integrin subunit inhibits adhesion-dependent lamellipodium formation by blocking Rac activation. The paxillin LD4 domain mediates this reduction in Rac activity by recruiting an ADP-ribosylation factor GTPase-activating protein (Arf-GAP) that decreases Arf activity, thereby inhibiting Rac. Finally, the localized formation of the α4–paxillin–Arf-GAP complex mediates the polarization of Rac activity and promotes directional cell migration. These findings establish a mechanism for the spatial localization of Rac activity to enhance cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Paxillin association with the α4 integrin subunit reduces local Rac activity at the cell periphery.
Figure 2: Paxillin association with an 'irrelevant' integrin α subunit inhibits adhesion-dependent Rac activation and cell spreading.
Figure 3: Integrin-associated paxillin LD4 domain leads to inhibition of adhesion-dependent Rac activation and cell spreading.
Figure 4: Paxillin mediates GIT1 binding to the α4 cytoplasmic domain.
Figure 5: Paxillin-mediated association of Arf-GAP activity with integrins inhibits adhesion-dependent Rac activation.
Figure 6: Disruption of the paxillin–Arf-GAP complex increases α4β1-mediated Rac activity at the cell periphery.
Figure 7: Disruption of the α4–paxillin–Arf-GAP complex inhibits α4β1-mediated motility.
Figure 8: Model for the regulation of Rac activity by α4-associated paxillin.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Lauffenburger, D. A. & Horowitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  2. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  3. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  4. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  5. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498 (2001).

    Article  CAS  Google Scholar 

  6. Hall, A. Rho GTPases and the actin cytoskeleton. Science 23, 509–514 (1998).

    Article  Google Scholar 

  7. Nobes, C. D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  Google Scholar 

  8. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).

    Article  CAS  Google Scholar 

  9. Rodriguez, O. C. et al. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    Article  CAS  Google Scholar 

  10. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    Article  CAS  Google Scholar 

  11. Yang, J. T., Rayburn, H. & Hynes, R. O. Cell adhesion events by alpha4 integrins are essential in placental and cardiac development. Development 121, 549–560 (1995).

    CAS  PubMed  Google Scholar 

  12. Hemler, M. E. VLA proteins in the integrin family: Structures, functions, and their role on leukocytes. Annu. Rev. Immunol. 8, 365–400 (1990).

    Article  CAS  Google Scholar 

  13. Arroyo, A. G., Yang, J. T., Rayburn, H. & Hynes, R. O. Differential requirements for α4 integrins in hematopoiesis. Cell 85, 997–1008 (1996).

    Article  CAS  Google Scholar 

  14. Liu, S. et al. Binding of paxillin to α4 integrins modifies integrin-dependent biological responses. Nature 402, 676–681 (1999).

    Article  CAS  Google Scholar 

  15. Han, J. et al. Phosphorylation of the integrin α4 cytoplasmic domain regulates paxillin binding. J. Biol. Chem. 276, 40903–40909 (2001).

    Article  CAS  Google Scholar 

  16. Han, J., Rose, D. M., Woodside, D. G., Goldfinger, L. E. & Ginsberg, M. H. Integrin α4β1-dependent T cell migration requires both phosphorylation and dephosphorylation of the α4 cytoplasmic domain to regulate the reversible binding of paxillin. J. Biol. Chem. 278, 34845–34853 (2003).

    Article  CAS  Google Scholar 

  17. Goldfinger, L. E., Han, J., Kiosses, W. B., Howe, A. K. & Ginsberg, M. H. Spatial restriction of α4 integrin phosphorylation regulates lamellipodial stability and α4β1-dependent cell migration. J. Cell Biol. 162, 731–741 (2003).

    Article  CAS  Google Scholar 

  18. Tumbarello, D. A., Brown, M. C. & Turner, C. E. The paxillin LD motifs. FEBS Lett. 513, 114–118 (2002).

    Article  CAS  Google Scholar 

  19. Turner, C. E. Paxillin interactions. J. Cell Sci. 113, 4139–4140 (2000).

    CAS  PubMed  Google Scholar 

  20. Turner, C. E. Paxillin and focal adhesion signalling. Nature Cell Biol. 2, E231–E236 (2000).

    Article  CAS  Google Scholar 

  21. Kiyokawa, E., Hashimoto, Y., Kurata, T., Sugimura, H. & Matsuda, M. Evidence that DOCK180 up-regulates signals from the CrkII-p130Cas complex. J. Biol. Chem. 273, 24479–24484 (1998).

    Article  CAS  Google Scholar 

  22. Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915 (2002).

    Article  CAS  Google Scholar 

  23. Wade, R., Bohl, J. & Vande, P. S. Paxillin null embryonic stem cells are impaired in cell spreading and tyrosine phosphorylation of focal adhesion kinase. Oncogene 21, 96–107 (2002).

    Article  CAS  Google Scholar 

  24. Nishiya, N., Tachibana, K., Shibanuma, M., Mashimo, J. I. & Nose, K. Hic-5-reduced cell spreading on fibronectin: competitive effects between paxillin and Hic-5 through interaction with focal adhesion kinase. Mol. Cell. Biol. 21, 5332–5345 (2001).

    Article  CAS  Google Scholar 

  25. West, K. A. et al. The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). J. Cell Biol. 154, 161–176 (2001).

    Article  CAS  Google Scholar 

  26. Zhao, Z. S., Manser, E., Loo, T. H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20, 6354–6363 (2000).

    Article  CAS  Google Scholar 

  27. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  28. Song, J., Khachikian, Z., Radhakrishna, H. & Donaldson, J. G. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cell Sci. 111, 2257–2267 (1998).

    CAS  PubMed  Google Scholar 

  29. Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480–1491 (1999).

    Article  CAS  Google Scholar 

  30. Santy, L. C. & Casanova, J. E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599–610 (2001).

    Article  CAS  Google Scholar 

  31. Liu, S. et al. A fragment of Paxillin binds the alpha 4 integrin cytoplasmic domain (Tail) and selectively inhibits α4-mediated cell migration. J. Biol. Chem. 277, 20887–20894 (2002).

    Article  CAS  Google Scholar 

  32. Premont, R. T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl Acad. Sci. USA 95, 14082–14087 (1998).

    Article  CAS  Google Scholar 

  33. Boshans, R. L., Szanto, S., Van Aelst, L. & D'Souza-Schorey, C. ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell. Biol. 20, 3685–3694 (2000).

    Article  CAS  Google Scholar 

  34. Radhakrishna, H., Al Awar, O., Khachikian, Z. & Donaldson, J. G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–866 (1999).

    CAS  PubMed  Google Scholar 

  35. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).

    Article  CAS  Google Scholar 

  36. Brown, M. C., West, K. A. & Turner, C. E. Paxillin-dependent paxillin kinase linker and p21-activated kinase localization to focal adhesions involves a multistep activation pathway. Mol. Biol. Cell 13, 1550–1565 (2002).

    Article  CAS  Google Scholar 

  37. Michiels, F. et al. Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J. Cell Biol. 137, 387–398 (1997).

    Article  CAS  Google Scholar 

  38. Tarricone, C. et al. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411, 215–219 (2001).

    Article  CAS  Google Scholar 

  39. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999).

    Article  CAS  Google Scholar 

  40. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol. 162, 113–124 (2003).

    Article  CAS  Google Scholar 

  41. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    Article  CAS  Google Scholar 

  42. Yoshii, S. et al. alphaPIX nucleotide exchange factor is activated by interaction with phosphatidylinositol 3-kinase. Oncogene 18, 5680–5690 (1999).

    Article  CAS  Google Scholar 

  43. Fleming, I. N., Gray, A. & Downes, C. P. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem. J. 351, 173–182 (2000).

    Article  CAS  Google Scholar 

  44. Chan, B. M. C. et al. Distinct cellular functions mediated by different VLA integrin α subunit cytoplasmic domains. Cell 68, 1051–1060 (1992).

    Article  CAS  Google Scholar 

  45. Kil, S. H., Krull, C. E., Cann, G., Clegg, D. & Bronner-Fraser, M. The α4 subunit of integrin is important for neural crest cell migration. Dev. Biol. 202, 29–42 (1998).

    Article  CAS  Google Scholar 

  46. Sengbusch, J. K., He, W., Pinco, K. A. & Yang, J. T. Dual functions of α4β1 integrin in epicardial development: initial migration and long-term attachment. J. Cell Biol. 157, 873–882 (2002).

    Article  CAS  Google Scholar 

  47. Tzima, E. et al. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 21, 6791–6800 (2002).

    Article  CAS  Google Scholar 

  48. Dell'Angelica, E. C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  Google Scholar 

  49. Arias-Salgado, E. G. et al. Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc. Natl Acad. Sci. USA 100, 13298–13302 (2003).

    Article  CAS  Google Scholar 

  50. Yano, H. et al. Roles played by a subset of integrin signaling molecules in cadherin-based cell–cell adhesion. J. Cell Biol. 166, 283–295 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Miguel A. Del Pozo, Dr Larry E. Goldfinger and Dr Sergio Lizano for valuable discussions, and Dr Christopher E. Turner for critical review of the manuscript. This work was supported by grants from the National Institutes of Health. N.N. was supported by The Naito Foundation and then by a postdoctoral fellowship from the American Heart Association. J.H. was an advanced Fellow of the National Multiple Sclerosis Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Ginsberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4; supplementary methods (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiya, N., Kiosses, W., Han, J. et al. An α4 integrin–paxillin–Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 7, 343–352 (2005). https://doi.org/10.1038/ncb1234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing