Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Marked for death

SUMOylation of PML–RARα oncoprotein has been linked to its arsenic-induced degradation and the therapeutic response in acute promyelocytic leukaemia. Two groups identify PML as an in vivo target of the RING finger ubiquitin E3 ligase RNF4, which specifically binds polySUMOylated PML and is essential for the arsenic-induced catabolism of both PML and PML–RARα.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A hypothetical pathway highlighting the role of RNF4 in controlling PML stability in normal cells and in response to ATO-induced PML degradation.

References

  1. Dilda, P. J. & Hogg, P. J. Cancer Treat Rev. 33, 542–564 (2007).

    Article  CAS  Google Scholar 

  2. Zhu, J. et al. Proc. Natl Acad. Sci. USA 94, 3978–3983 (1997).

    Article  CAS  Google Scholar 

  3. Kamitani, T. et al. J. Biol. Chem. 273, 26675–26682 (1998).

    Article  CAS  Google Scholar 

  4. Lallemand-Breitenbach, V. et al. J. Exp. Med. 193, 1361–1371 (2001).

    Article  CAS  Google Scholar 

  5. Lallemand-Breitenbach, V. et al. Nature Cell Biol. 10, 547–555 (2008).

    Article  CAS  Google Scholar 

  6. Tatham, M. H. et al. Nature Cell Biol. 10, 538–546 (2008).

    Article  CAS  Google Scholar 

  7. Matic, I. et al. Mol. Cell Proteomics 7, 132–144 (2008).

    Article  CAS  Google Scholar 

  8. Mukhopadhyay, D. et al. J. Cell Biol. 174, 939–949 (2006).

    Article  CAS  Google Scholar 

  9. Hayakawa, F. & Privalsky, M. L. Cancer Cell 5, 389–401 (2004).

    Article  CAS  Google Scholar 

  10. Reineke, E. L. et al. Mol. Cell Biol. 28, 997–1006 (2008).

    Article  CAS  Google Scholar 

  11. Poukka, H., Aarnisalo, P., Santti, H., Janne, O. A. & Palvimo, J. J. J. Biol. Chem. 275, 571–579 (2000).

    Article  CAS  Google Scholar 

  12. Fedele, M. et al. J. Biol. Chem. 275, 7894–7901 (2000).

    Article  CAS  Google Scholar 

  13. Lyngso, C. et al. J. Biol. Chem. 275, 26144–26149 (2000).

    Article  CAS  Google Scholar 

  14. Kaiser, F. J., Moroy, T., Chang, G. T., Horsthemke, B. & Ludecke, H. J. J. Biol. Chem. 278, 38780–38785 (2003).

    Article  CAS  Google Scholar 

  15. Wu, S. M. et al. Mol. Pharmacol. 66, 1317–1324 (2004).

    Article  CAS  Google Scholar 

  16. Shyu, H. W., Hsu, S. H., Hsieh-Li, H. M. & Li, H. Exp. Cell Res. 287, 301–313 (2003).

    Article  CAS  Google Scholar 

  17. Wang, Z. G. et al. Science 279, 1547–1551 (1998).

    Article  CAS  Google Scholar 

  18. Hecker, C. M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. J. Biol. Chem. 281, 16117–16127 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrie, K., Zelent, A. Marked for death. Nat Cell Biol 10, 507–509 (2008). https://doi.org/10.1038/ncb0508-507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0508-507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing