Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Spontaneous cell polarization: undermining determinism

It is widely observed that eukaryotic cells can polarize spontaneously in the absence of pre-established asymmetric cues. This phenomenon indicates that the principle of self-organization may be central to the establishment of cell polarity. Modelling work, as well as recent experimental data from several organisms, suggests that a combination of local positive feedback loops and global inhibitors could result in robust cell symmetry breaking through amplification of minute, stochastic variations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cue-dependent and random cell polarization in different organisms.
Figure 2: Positive feedback loops that can drive spontaneous cell polarization.

References

  1. Arkowitz, R.A. Responding to attraction: chemotaxis and chemotropism in Dictyostelium and yeast. Trends Cell Biol. 9, 20–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Drubin, D.G. & Nelson, W.J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Chung, C.Y., Funamoto, S. & Firtel, R.A. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26, 557–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Kirschner, M., Gerhart, J. & Mitchison, T. Molecular 'vitalism'. Cell 100, 79–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Parent, C.A. & Devreotes, P.N. A cell's sense of direction. Science 284, 765–770 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Firtel, R.A. & Chung, C.Y. The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients. Bioessays 22, 603–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Devreotes, P.N. & Zigmond, S.H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Brownlee, C. & Bouget, F.Y. Polarity determination in Fucus: from zygote to multicellular embryo. Semin. Cell Dev. Biol. 9, 179–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Robinson, K.R., Wozniak, M., Pu, R. & Messerli, M. Symmetry breaking in the zygotes of the fucoid algae: controversies and recent progress. Curr. Top. Dev. Biol. 44, 101–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hable, W.E. & Kropf, D.L. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev. Biol. 198, 45–56 (1998).

    CAS  PubMed  Google Scholar 

  11. Vincent, J.P., Oster, G.F. & Gerhart, J.C. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113, 484–500 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Gerhart, J. et al. Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107, 37–51 (1989).

    PubMed  Google Scholar 

  13. Drubin, D.G. Development of cell polarity in budding yeast. Cell 65, 1093–1096 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Casamayor, A. & Snyder, M. Bud-site selection and cell polarity in budding yeast. Curr. Opin. Microbiol. 5, 179–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Park, H.O., Kang, P.J. & Rachfal, A.W. Localization of the Rsr1/Bud1 GTPase involved in selection of a proper growth site in yeast. J. Biol. Chem. 277, 26721–26724 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Pruyne, D. & Bretscher, A. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113, 365–375 (2000).

    CAS  PubMed  Google Scholar 

  17. Johnson, D.I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63, 54–105 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chant, J. & Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Gulli, M.P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Lechler, T., Jonsdottir, G.A., Klee, S.K., Pellman, D. & Li, R. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol. 155, 261–270 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wedlich-Soldner, R., Altschuler, S., Wu, L. & Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Seeley, T.D. When is self-organization used in biological systems? Biol. Bull. 202, 314–318 (2002).

    Article  PubMed  Google Scholar 

  23. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. Bioessays 22, 753–760 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30–39 (1972).

    Article  CAS  PubMed  Google Scholar 

  26. Niggli, V. A membrane-permeant ester of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) is an activator of human neutrophil migration. FEBS Lett. 473, 217–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Weiner, O.D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 4, 509–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bourne, H.R. & Weiner, O. Cell polarity: A chemical compass. Nature 419, 21 (2002).

  29. Weiner, O.D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Comer, F.I. & Parent, C.A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Pruyne, D. et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 297, 612–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Sagot, I., Rodal, A.A., Moseley, J., Goode, B.L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Pu, R., Wozniak, M. & Robinson, K.R. Cortical actin filaments form rapidly during photopolarization and are required for the development of calcium gradients in Pelvetia compressa zygotes. Dev. Biol. 222, 440–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Thompson, C.R. & Bretscher, M.S. Cell polarity and locomotion, as well as endocytosis, depend on NSF. Development 129, 4185–4192 (2002).

    CAS  PubMed  Google Scholar 

  36. Houliston, E. & Elinson, R.P. Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs. Development 112, 107–117 (1991).

    CAS  PubMed  Google Scholar 

  37. Houliston, E. & Elinson, R.P. Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs. J. Cell Biol. 114, 1017–1028 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Larabell, C.A., Rowning, B.A., Wells, J., Wu, M. & Gerhart, J.C. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development 122, 1281–1289 (1996).

    CAS  PubMed  Google Scholar 

  39. Nedelec, F.J., Surrey, T., Maggs, A.C. & Leibler, S. Self-organization of microtubules and motors. Nature 389, 305–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Surrey, T., Nedelec, F., Leibler, S. & Karsenti, E. Physical properties determining self-organization of motors and microtubules. Science 292, 1167–1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Miller, J.R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meinhardt, H. Orientation of chemotactic cells and growth cones: models and mechanisms. J. Cell Sci. 112, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank O. Weiner, S. Wedlich, S. Altschuler and L. Wu for critical comments on the manuscript. This work was supported by an EMBO fellowship to R.W.S and a grant from the National Institute of Health (GM057063) to R.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedlich-Soldner, R., Li, R. Spontaneous cell polarization: undermining determinism. Nat Cell Biol 5, 267–270 (2003). https://doi.org/10.1038/ncb0403-267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0403-267

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing