Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Encoded self-assembling chemical libraries

Abstract

The isolation of molecules capable of high-affinity and specific binding to biological targets is a central problem in chemistry, biology and pharmaceutical sciences. Here we describe the use of encoded self-assembling chemical (ESAC) libraries for the facile identification of molecules that bind macromolecular targets. ESAC technology uses libraries of organic molecules linked to individual oligonucleotides that mediate the self-assembly of the library and provide a code associated with each organic molecule. After panning ESAC libraries on the biomolecular target of interest, the 'binding code' of the selected compounds can be 'decoded' by a number of experimental techniques (e.g., hybridization on oligonucleotide microarrays). The potential of this technology was demonstrated by the affinity maturation (>40-fold) of binding molecules to human serum albumin and bovine carbonic anhydrase, leading to binders with dissociation constants in the nanomolar range.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of ESAC libraries.
Figure 2: Decoding of model ESAC selections against streptavidin.
Figure 3: Microarray decoding of ESAC affinity maturation selections against HSA and CA.
Figure 4: Affinity measurements of ligands to HSA and CA, obtained by ESAC selections.
Figure 5: Isothermal titration calorimetry profiles of CA binders.

Similar content being viewed by others

References

  1. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  Google Scholar 

  2. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  3. Gold, L. Oligonucleotides as research, diagnostic, and therapeutic agents. J. Biol. Chem. 270, 13581–13584 (1995).

    Article  CAS  Google Scholar 

  4. Ramstrom, O. & Lehn, J.M. Drug discovery by dynamic combinatorial libraries. Nat. Rev. Drug Discov. 1, 26–36 (2002).

    Article  CAS  Google Scholar 

  5. Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  Google Scholar 

  6. Otto, S., Furlan, R.L. & Sanders, J.K. Dynamic combinatorial chemistry. Drug Discov. Today 7, 117–125 (2002).

    Article  CAS  Google Scholar 

  7. Pellecchia, M., Sem, D.S. & Wuthrich, K. NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219 (2002).

    Article  CAS  Google Scholar 

  8. Erlanson, D.A. et al. In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnol. 21, 308–314 (2003).

    Article  CAS  Google Scholar 

  9. Griffiths, A.D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  Google Scholar 

  10. McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  11. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  12. Maly, D.J., Choong, I.C. & Ellman, J.A. Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl. Acad. Sci. USA 97, 2419–2424 (2000).

    Article  CAS  Google Scholar 

  13. Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, 1996).

    Google Scholar 

  14. Josephson, S., Lagerholm, E. & Palm, G. Automatic synthesis of oligodeoxynucleotides and mixed oligodeoxynucleotides using the phosphoamidite method. Acta Chem. Scand. B 38, 539–545 (1984).

    Article  CAS  Google Scholar 

  15. Velculescu, V.E., Zhang, L., Vogelstein, B. & Kinzler, K.W. Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  CAS  Google Scholar 

  16. Epps, D.E., Raub, T.J. & Kezdy, F.J. A general, wide-range spectrofluorometric method for measuring the site-specific affinities of drugs toward human serum albumin. Anal. Biochem. 227, 342–350 (1995).

    Article  CAS  Google Scholar 

  17. Scozzafava, A. et al. Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? J. Med. Chem. 42, 2641–2650 (1999).

    Article  CAS  Google Scholar 

  18. Pocker, Y. & Stone, J.T. The catalytic versatility of erythrocyte carbonic anhydrase. 3. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6, 668–678 (1967).

    Article  CAS  Google Scholar 

  19. Carotti, A., Raguseo, C., Campagna, F., Langridge, R. & Klein, T.E. Inhibition of carbonic anhydrase by substituted benzenesulfonamides. A reinvestigation by QSAR and molecular graphics analysis. Quantitative Structure-Activity Relationships 8, 1–10 (1989).

    Article  CAS  Google Scholar 

  20. Brenner, S. & Lerner, R.A. Encoded combinatorial chemistry. Proc. Natl. Acad. Sci. USA 89, 5381–5383 (1992).

    Article  CAS  Google Scholar 

  21. Doyon, J.B., Snyder, T.M. & Liu, D.R. Highly sensitive in vitro selections for DNA-linked synthetic small molecules with protein binding affinity and specificity. J. Am. Chem. Soc. 125, 12372–12373 (2003).

    Article  CAS  Google Scholar 

  22. Hawkins, R.E., Russell, S.J. & Winter, G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896 (1992).

    Article  CAS  Google Scholar 

  23. Morgan, G.T. Alfred Werner. J. Chem. Soc. 117, 1639–1648 (1920).

    CAS  Google Scholar 

  24. Jencks, W.P. On the attribution and additivity of binding energies. Proc. Natl. Acad. Sci. USA 78, 4046–4050 (1981).

    Article  CAS  Google Scholar 

  25. Fersht, A. Enzyme Structure and Mechanism, edn. 2 (Freeman, New York, 1990).

    Google Scholar 

  26. Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins. Science 278, 497–499 (1997).

    Article  CAS  Google Scholar 

  27. Rye, H.S. et al. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res. 20, 2803–2812 (1992).

    Article  CAS  Google Scholar 

  28. Neri, D., Momo, M., Prospero, T. & Winter, G. High-affinity antigen binding by chelating recombinant antibodies (CRAbs). J. Mol. Biol. 246, 367–373 (1995).

    Article  CAS  Google Scholar 

  29. Fattorusso, R. et al. NMR structure of the human oncofoetal fibronectin ED-B domain, a specific marker for angiogenesis. Structure 7, 381–390 (1999).

    Article  CAS  Google Scholar 

  30. Scheuermann, J., Volonterio, A., Zerbe, O., Zanda, M. & Neri, D. Discovery and investigation of lead compounds as binders to the extra-domain B of the angiogenesis marker, fibronectin. Drug Dev. Res. 58, 268–282 (2003).

    Article  CAS  Google Scholar 

  31. Strobel, S.A., Doucette-Stamm, L.A., Riba, L., Housman, D.E. & Dervan, P.B. Site-specific cleavage of human chromosome 4 mediated by triple-helix formation. Science 254, 1639–1642 (1991).

    Article  CAS  Google Scholar 

  32. Cuenoud, B. & Schepartz, A. Altered specificity of DNA-binding proteins with transition metal dimerization domains. Science 259, 510–513 (1993).

    Article  CAS  Google Scholar 

  33. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  34. Gadek, T.R. et al. Generation of an LFA-1 antagonist by the transfer of the ICAM-1 immunoregulatory epitope to a small molecule. Science 295, 1086–1089 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ETH Zürich, the Swiss National Science Foundation, the Bundesamt für Bildung und Wissenschaft/EU (STROMA Project) and Philogen. S.M. has been the recipient of a Boehringer-Ingelheim bursary and of an ETH Zürich bursary (special grant: ESACHEL). C.E.D. is a recipient of a bursary from the Roche Research Foundation. We are grateful to J. Sobek and R. Schlapbach for access to instrumentation and help with the microarray technology, and to R. Brunisholz, W. Amrein, O. Scheidegger, O. Greter, P. Hunziker and S. Chesnov for analytical assistance. We thank G. Guarda for help in decoding by sequencing, and R. Buff, O. Schärer and members of the Neri group for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Ethics declarations

Competing interests

ESACHEL technology is covered by a patent application, which was licensed from ETH Zurich to Philogen S.r.l. under a share of revenues agreement. D.N. owns shares of Philogen and consults for this company. Since August 2003, S.M. and J.S. have received a salary from Philogen. The company also pays for reagents and overhead for ETH Zurich.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melkko, S., Scheuermann, J., Dumelin, C. et al. Encoded self-assembling chemical libraries. Nat Biotechnol 22, 568–574 (2004). https://doi.org/10.1038/nbt961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing