Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The use of nanocrystals in biological detection

Abstract

In the coming decade, the ability to sense and detect the state of biological systems and living organisms optically, electrically and magnetically will be radically transformed by developments in materials physics and chemistry. The emerging ability to control the patterns of matter on the nanometer length scale can be expected to lead to entirely new types of biological sensors. These new systems will be capable of sensing at the single-molecule level in living cells, and capable of parallel integration for detection of multiple signals, enabling a diversity of simultaneous experiments, as well as better crosschecks and controls.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantum confinement in semiconductors and new biological labels.
Figure 2: Photonic band gap materials for biological sensing.
Figure 3: Noble metal nanocrystal based biosensors.
Figure 4: Nanowire- and nanotube-based electrical biosensors.

Similar content being viewed by others

References

  1. Stiriba, S.E., Frey, H., & Haag, R. Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Ange. Chemie Int. Ed. 41, 1329–1334 (2002).

    Article  CAS  Google Scholar 

  2. Clausen-Schaumann, H., Seitz, M., Krautbauer, R., & Gaub, H.E. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Paegel, B.M., Blazej, R.G., & Mathies, R.A. Microfluidic devices for DNA sequencing: sample preparation and electrophoretic analysis. Curr. Opin. Biotechnol. 14, 42–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Meldrum, F.C., Heywood, B.R., & Mann, S. Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., & Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Esaki, L. The evolution of nanoscale quantum effects in semiconductor physics. Nanostructured Mater. 12, 1–8 (1992).

    Article  Google Scholar 

  8. Esaki, L. The birth of the semiconductor superlattice. Curr. Sci. 69, 240–242 (1995).

    Google Scholar 

  9. Yoffe, A.D. Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Physics 50, 1–208 (2001).

    Article  CAS  Google Scholar 

  10. Ashoori, R.C. Electrons in artificial atoms. Nature 379, 413–419 (1996).

    Article  CAS  Google Scholar 

  11. Alivisatos, A.P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  12. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Chan, W.C.W. & Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Tran, P.T., Goldman, E.R., Anderson, G.P., Mauro, J.M., & Mattoussi, H. Use of luminescent CdSe-ZnS nanocrystal bioconjugates in quantum dot-based nanosensors. Physica Status Solidi B 229, 427–432 (2002).

    Article  CAS  Google Scholar 

  15. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

  16. Parak, W.J. et al. Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem. Mater. 14, 2113–2119 (2002).

    Article  CAS  Google Scholar 

  17. Wang, S.P., Mamedova, N., Kotov, N.A., Chen, W., & Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Letters 2, 817–822 (2002).

    Article  CAS  Google Scholar 

  18. Guo, W., Li, J.J., Wang, Y.A., Peng, X. Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem. Mater. 15 3125–3133 (2003).

    Article  CAS  Google Scholar 

  19. Wu, X.Y. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Parak, W.J. et al. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 14, 882–885 (2002).

    Article  CAS  Google Scholar 

  21. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Taylor, J.R., Fang, M.M., & Nie, S.M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 72, 1979–1986 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, H.X. et al. Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 31, E43 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Han, M.Y., Gao, X.H., Su, J.Z., & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19, 631–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Leatherdale, C.A., Woo, W.K., Mikulec, F.V., & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Physical Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  26. Larson, D.R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2000).

    Article  Google Scholar 

  27. Yablonovitch, E. Photonic crystals: Semiconductors of light. Sci. Am. 285, 47–51, 54–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Argyros, A. et al. Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale. Micron 33, 483–487 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Vos, W.L. & Polman, A. Optical probes inside photonic crystals. MRS Bull. 26, 642–646 (2001).

    Article  CAS  Google Scholar 

  30. Velev, O.D. & Lenhoff, A.M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid & Interface Sci. 5, 56–63 (2000).

    Article  CAS  Google Scholar 

  31. Jiang, P., Bertone, J.F. & Colvin, V.L. A lost-wax approach to monodisperse colloids and their crystals. Science 291, 453–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Norris, D.J. & Vlasov, Y.A. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv. Mater. 13, 371–376 (2001).

    Article  CAS  Google Scholar 

  33. Wijnhoven, J. & Vos, W.L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Asher, S.A., Peteu, S.F., Reese, C.E., Lin, M.X., & Finegold, D. Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal. Bioanal. Chem. 373, 632–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Reese, C.E. & Asher, S.A. Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Anal. Chem. 75, 3915–3918 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Asher, S.A. et al. Photonic crystal carbohydrate sensors: Low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322–3329 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters. (Springer Verlag, Berlin, 1995).

    Book  Google Scholar 

  38. McFarland, A.D. & Van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    Article  CAS  Google Scholar 

  39. Haes, A.J. & Van Duyne, R.P. A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596–10604 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Jin, R.C. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A. & Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Physics 116, 6755–6759 (2002).

    Article  CAS  Google Scholar 

  42. Link, S., Mohamed, M.B. & El-Sayed, M.A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073–3077 (1999).

    Article  CAS  Google Scholar 

  43. Kelly, K.L., Coronado, E., Zhao, L.L. & Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Physical Chem. B 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  44. Novak, J.P. & Feldheim, D.L. Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J. Am. Chem. Soc. 122, 3979–3980 (2000).

    Article  CAS  Google Scholar 

  45. Daniela Zanchet, C.M.M., Parak, W.J., Gerion, D. & Alivisatos, A.P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 1, 32–35 (2001).

    Article  CAS  Google Scholar 

  46. Loweth, C.J., Caldwell, W.B., Peng, X.G., Alivisatos, A.P. & Schultz, P.G. DNA-based assembly of gold nanocrystals. Ange. Chem. Int. Ed. 38, 1808–1812 (1999).

    Article  CAS  Google Scholar 

  47. Alivisatos, A.P. et al. Organization of nanocrystal molecules using DNA. Nature 382, 609–611 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R. & Feld, M.S. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14, R597–R624 (2002).

    Article  CAS  Google Scholar 

  50. Cao, Y.W.C., Jin, R.C. & Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  52. Nie, S.M. & Emery, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Bosnick, K.A., Jiang, J. & Brus, L.E. Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates. J. Phys. Chem. B 106, 8096–8099 (2002).

    Article  CAS  Google Scholar 

  54. Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L. & Halas, N.J. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Physics Lett. 82, 257–259 (2003).

    Article  CAS  Google Scholar 

  55. Hirsch, L.R., Jackson, J.B., Lee, A., Halas, N.J., West, J. A whole blood immunoassay using gold nanoshells. Anal. Chem. 75, 2377–2381 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Hu, J.T., Odom, T.W. & Lieber, C.M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

    Article  CAS  Google Scholar 

  57. Wu, Y.Y. et al. Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties. Chem.-Eur. J. 8, 1261–1268 (2002).

    Google Scholar 

  58. Ebbesen, T.W. Carbon nanotubes. Annu. Rev. Mater. Sci. 24, 235–264 (1994).

    Article  CAS  Google Scholar 

  59. Cui, Y., Wei, Q.Q., Park, H.K. & Lieber, C.M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Collins, P.G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801–1804 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Chen, R., Zhang, Y., Wang, D. & Dai, H. Non-covalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Article  CAS  PubMed  Google Scholar 

  63. Chen, R.J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bayley, H., Braha, O., & Gu, L.Q. Stochastic sensing with protein pores. Adv. Mater. 12, 139–142 (2000).

    Article  CAS  Google Scholar 

  65. Bayley, H. & Cremer, P.S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Physical Rev. Lett. 89, 8103–8107 (2002).

    Google Scholar 

  67. Deamer, D.W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Meller, A., Nivon, L., Brandin, E., Golovchenko, J., & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl. Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saleh, O.A. & Sohn, L.L. An artificial nanopore for molecular sensing. Nano Lett. 3, 37–38 (2003).

    Article  CAS  Google Scholar 

  70. Jing, S., Gider, S., Babcock, K. & Awschalom, D.D. Magnetic clusters in molecular beams, metals, and semiconductors. Science 271, 937–941 (1996).

    Article  Google Scholar 

  71. Coffey, W.T. et al. Thermally activated relaxation time of a single domain ferromagnetic particle subjected to a uniform field at an oblique angle to the easy axis: comparison with experimental observations. Physical Rev. Lett. 80, 5655–5658 (1998).

    Article  CAS  Google Scholar 

  72. Liang, W.J., Shores, M.P., Bockrath, M., Long, J.R., & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Dunin-Borkowski, R.E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Tiefenauer, L.X., Kuhne, G., & Andres, R.Y. Antibody magnetite nanoparticles—in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjugate Chem. 4, 347–352 (1993).

    Article  CAS  Google Scholar 

  75. Hogemann, D., Josephson, L., Weissleder, R., & Basilion, J.P. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chem. 11, 941–946 (2000).

    Article  CAS  Google Scholar 

  76. Chapon, C. et al. High field magnetic resonance imaging evaluation of superparamagnetic iron oxide nanoparticles in a permanent rat myocardial infarction. Invest. Radiol. 38, 141–146 (2003).

    CAS  PubMed  Google Scholar 

  77. Tchikov, V., Schutze, S., & Kronke, M.K. Comparison between immunofluorescence and immunomagnetic techniques of cytometry. J. Magnetism Magnetic Mater. 194, 242–247 (1999).

    Article  CAS  Google Scholar 

  78. Wilhelm, C., Gazeau, F., & Bacri, J.C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J. 31, 118–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Murthy, S.N. Magnetophoresis: an approach to enhance transdermal drug diffusion. Pharmazie 54, 377–379 (1999).

    CAS  PubMed  Google Scholar 

  80. Chemla, Y.R. et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. USA 97, 14268–14272 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Besse, P.A., Boero, G., Demierre, M., Pott, V., & Popovic, R. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Physics Lett. 80, 4199–4201 (2002).

    Article  CAS  Google Scholar 

  82. Horber, J.K.H. & Miles, M.J. Scanning probe evolution in biology. Science, 302, 1002–1005 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hammel, P.C., et al. The magnetic-resonance force microscope: A new tool for high-resolution, 3-D, subsurface scanned probe imaging. Proceedings of the IEEE, 91, 789–798 (2003).

    Article  Google Scholar 

  84. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  85. Efros, A.L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Physical Rev. Lett. 78, 1110–1113 (1997).

    Article  CAS  Google Scholar 

  86. Regelman, D.V., Gershoni, D., Ehrenfreund, E., Schoenfeld, W.V., & Petroff, P.M. Spectroscopy of single semiconductor quantum dots at negative, neutral, and positive charge states. Physica Status Solidi A-Appl. Res. 190, 491–497 (2002).

    Article  CAS  Google Scholar 

  87. Peng, X.G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Hu, J.T. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Dahan, M. et al. Time-gated biological imaging by use of colloidal quantum dots. Optics Lett. 26, 825–827 (2001).

    Article  CAS  Google Scholar 

  90. Shimizu, K.T., Woo, W.K., Fisher, B.R., Eisler, H.J., & Bawendi, M.G. Surface-enhanced emission from single semiconductor nanocrystals. Physical Rev. Lett. 89, 117401-1–117401-4 (2002).

    Google Scholar 

  91. Solovyev, V.G. et al. Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. J. Appl. Physics 94, 1205–1210 (2003).

    Article  CAS  Google Scholar 

  92. Gaponenko, S.V. et al. Spontaneous emission of organic molecules and semiconductor nanocrystals in a photonic crystal. J. Luminescence 9, 152–156 (2000).

    Article  Google Scholar 

  93. Fan, X., Doran, A. & Wang, H. High-Q whispering gallery modes from a composite system of GaAs quantum well and fused silica microsphere. Appl. Physics Lett. 73, 3190–3192 (1998).

    Article  CAS  Google Scholar 

  94. Artemyev, M.V., Woggon, U., Wannemacher, R., Jaschinski, H., & Langbein, W. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Lett. 1, 309–314 (2001).

    Article  CAS  Google Scholar 

  95. Kiraz, A. et al. Cavity-quantum electrodynamics with quantum dots. J. Optics B: Quantum Semiclassical Optics 5, 129–137 (2003).

    Article  CAS  Google Scholar 

  96. DiVincenzo, D.P. & Loss, D. Quantum computers and quantum coherence. J. Magnetism Magnetic Mater. 200, 202–218 (1999).

    Article  CAS  Google Scholar 

  97. Li, L.S., Hu, J.T., Yang, W.D. & Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349–351 (2001).

    Article  CAS  Google Scholar 

  98. Chen, R.J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author is a scientific founder of Quantum Dot Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alivisatos, P. The use of nanocrystals in biological detection. Nat Biotechnol 22, 47–52 (2004). https://doi.org/10.1038/nbt927

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing