Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase

Abstract

L-Ascorbic acid (vitamin C) in fruits and vegetables is an essential component of human nutrition. Surprisingly, only limited information is available about the pathway(s) leading to its biosynthesis in plants. Here, we report the isolation and characterization of GalUR, a gene from strawberry that encodes an NADPH-dependent D-galacturonate reductase. We provide evidence that the biosynthesis of L-ascorbic acid in strawberry fruit occurs through D-galacturonic acid, a principal component of cell wall pectins. Expression of GalUR correlated with changing ascorbic acid content in strawberry fruit during ripening and with variations in ascorbic acid content in fruit of different species of the genus Fragaria. Reduced pectin solubilization in cell walls of transgenic strawberry fruit with decreased expression of an endogenous pectate lyase gene resulted in lower ascorbic acid content. Overexpression of GalUR in Arabidopsis thaliana enhanced vitamin C content two- to threefold, demonstrating the feasibility of engineering increased vitamin C levels in plants using this gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed biosynthetic pathways of L-ascorbic acid in animals (reactions 1–8) and plants (reactions 9–20).
Figure 2: Overexpression of GalUR in A. thaliana increases the ascorbic acid content.
Figure 3: Ascorbic acid content correlates with the expression of GalUR.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Levine, M. New concepts in the biology and biochemistry of ascorbic acid. N. Engl. J. Med. 314, 892–902 (1986).

    Article  CAS  Google Scholar 

  2. Davey, M.W. et al. Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860 (2000).

    Article  CAS  Google Scholar 

  3. Burns, J.J. Ascorbic acid. in Metabolic Pathways, vol. 1 (ed. Greenberg, D.M.) 341–356 (Academic Press, New York, 1960).

    Google Scholar 

  4. Wheeler, G.L., Jones, M.A. & Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369 (1998).

    Article  CAS  Google Scholar 

  5. Conklin, P.L., Saracco, S.A., Norris, S.R. & Last, R.L. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154, 847–856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolucka, B.A. et al. Partial purification and identification of GDP-mannose 3″,5″-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc. Natl. Acad. Sci. USA 98, 14843–14848 (2001).

    Article  CAS  Google Scholar 

  7. Smirnoff, N., Conklin, P.L. & Loewus, F.A. Biosynthesis of ascorbic acid: A renaissance. Annu. Rev. Plant Physiol. Plant Molec. Biol. 52, 437–467 (2001).

    Article  CAS  Google Scholar 

  8. Loewus, F.A. & Kelly, S. Identity of L-ascorbic acid formed from D-glucose by the strawberry (Fragaria). Nature 191, 1059–1061 (1961).

    Article  CAS  Google Scholar 

  9. Isherwood, F.A., Chen, Y.T. & Mapson, L.W. Synthesis of l-ascorbic acid in plants and animals. Biochem. J. 56, 1–21 (1954).

    Article  CAS  Google Scholar 

  10. Loewus, F.A. & Kelly, S. The metabolism of D-galacturonic acid and its methyl ester in the detached ripening strawberry. Arch. Biochem. Biophys. 95, 483–493 (1961).

    Article  CAS  Google Scholar 

  11. Mapson, L.W. & Isherwood, F.A. Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. Biochem. J. 64, 13–22 (1956).

    Article  CAS  Google Scholar 

  12. Conklin, P.L. Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24, 383–394 (2001).

    Article  CAS  Google Scholar 

  13. Medina-Escobar, N., Cárdenas, J., Valpuesta, V., Muñoz-Blanco, J. & Caballero, J.L. Cloning and characterization of cDNAs from genes differentially expressed during the strawberry fruit ripening process by a MAST-PCR-SBDS method. Anal. Biochem. 248, 288–296 (1997).

    Article  CAS  Google Scholar 

  14. Perkins-Veazie, P. Growth and ripening of strawberry fruit. Hort. Rev. 17, 267–297 (1996).

    Google Scholar 

  15. Jez, J.M., Flynn, T.G. & Penning, T.M. A nomenclature system for the aldo-keto reductase superfamily. Adv. Exp. Med. Biol. 414, 579–600 (1997).

    Article  CAS  Google Scholar 

  16. Unterlinner, B., Lenz, F. & Kutchan, T.M. Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J. 18, 465–475 (1999).

    Article  CAS  Google Scholar 

  17. Mylne, J. & Botella, J.R. Binary vectors for sense and antisense expression of Arabidopsis ESTs. Plant Molec. Biol. Rep. 16, 257–262 (1998).

    Article  CAS  Google Scholar 

  18. Jiménez-Bermúdez, S. et al. Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Physiol. 128, 751–759 (2002).

    Article  Google Scholar 

  19. Loewus, F.A., Jang, R. & Seegmiller, C.G. The conversion of C14-labeled sugars to l-ascorbic acid in ripening strawberries. J. Biol. Chem. 222, 649–664 (1956).

    CAS  PubMed  Google Scholar 

  20. Medina-Escobar, N., Cárdenas, J., Moyano, E., Caballero, J.L. & Muñoz-Blanco, J. Cloning, molecular characterization and expression pattern of a strawberry ripening specific cDNA with sequence homology to pectate lyase from higher plants. Plant Molec. Biol. 34, 867–877 (1997).

    Article  CAS  Google Scholar 

  21. Conklin, P.L. et al. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. USA 96, 4198–4203 (1999).

    Article  CAS  Google Scholar 

  22. Gatzek, S., Wheeler, G.L. & Smirnoff, N. Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J. 30, 541–553 (2002).

    Article  CAS  Google Scholar 

  23. Davey, M.W. et al. Ascorbate biosynthesis in Arabidopsis cell suspension culture. Plant Physiol. 121, 535–543 (1999).

    Article  CAS  Google Scholar 

  24. Jain, A.K. & Nessler, C.L. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Molec. Breed. 6, 73–78 (2000).

    Article  CAS  Google Scholar 

  25. Hancock, R.D. & Viola, R. Biotechnological approaches for L-ascorbic acid production. Trends Biotechnol. 20, 299–305 (2002).

    Article  CAS  Google Scholar 

  26. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco culture. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  27. Guan, K.L. & Dixon, J.E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192, 262–267 (1991).

    Article  CAS  Google Scholar 

  28. Harlow, E. & Lane, D. in Antibodies, A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988).

    Google Scholar 

  29. Bechtold, N., Ellis, J. & Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R. Acad. Sci. Paris Life Sci. 316, 1194–1199 (1993).

    CAS  Google Scholar 

  30. Rao, M. & Ormrod, D.P. Ozone pressure decreases UVB sensitivity in a UVB-sensitive flavonoid mutant of Arabidopsis. Photochem. Photobiol. 61, 71–78 (1995).

    Article  CAS  Google Scholar 

  31. Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Bradley, J. Jones, F. Loewus, and I. Amaya for critical review of the manuscript, and J. R. Botella for the pSOV2 delivery. This work was supported by grants (BIO98-0496-C02-01) from Ministry of Education and Science (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoriano Valpuesta.

Ethics declarations

Competing interests

F.A., M.A.B., and V.V. have filed a patent application relating to the work described in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agius, F., González-Lamothe, R., Caballero, J. et al. Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21, 177–181 (2003). https://doi.org/10.1038/nbt777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt777

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing