Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total biosynthesis of hydrocortisone from a simple carbon source in yeast

Abstract

We report on the production of hydrocortisone, the major adrenal glucocorticoid of mammals and an important intermediate of steroidal drug synthesis, from a simple carbon source by recombinant Saccharomyces cerevisiae strains. An artificial and fully self-sufficient biosynthetic pathway involving 13 engineered genes was assembled and expressed in a single yeast strain. Endogenous sterol biosynthesis was rerouted to produce compatible sterols to serve as substrates for the heterologous part of the pathway. Biosynthesis involves eight mammalian proteins (mature forms of CYP11A1, adrenodoxin (ADX), and adrenodoxin reductase (ADR); mitochondrial forms of ADX and CYP11B1; 3β-HSD, CYP17A1, and CYP21A1). Optimization involved modulating the two mitochondrial systems and disrupting of unwanted side reactions associated with ATF2, GCY1, and YPR1 gene products. Hydrocortisone was the major steroid produced. This work demonstrates the feasibility of transfering a complex biosynthetic pathway from higher eukaryotes into microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstitution of the hydrocortisone biosynthetic pathway in S. cerevisiae.
Figure 2: Steroid productivity of selected strains.

Similar content being viewed by others

References

  1. Woodward, R.B., Sondhermer, F., Taule, D., Hensler, K. & McLamore, W.H. The total synthesis of steroids. J. Am. Chem. Soc. 74, 4223 (1952).

    Article  CAS  Google Scholar 

  2. Miller, W.L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 9, 295–318 (1988).

    Article  CAS  Google Scholar 

  3. Duport, C., Spagnoli, R., Degryse, E. & Pompon, D. Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat. Biotechnol. 16, 186–189 (1998).

    Article  CAS  Google Scholar 

  4. Slater, S. et al. Metabolic engineering of Arabidopsis and Brassica for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat. Biotechnol. 17, 1011–1016 (1999).

    Article  CAS  Google Scholar 

  5. Dayem, L.C. et al. Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli. Biochemistry. 23, 5193–5201 (2002).

    Article  Google Scholar 

  6. Dumas, B. et al. 11-β-hydroxylase activity in recombinant yeast mitochondria. In vivo conversion of 11-deoxycortisol to hydrocortisone. Eur. J. Biochem. 238, 495–504 (1996).

    Article  CAS  Google Scholar 

  7. Lacour, T., Achstetter, T. & Dumas, B. Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast. Implication of in vitro cytochrome P450-11-β-monooxygenase system. J. Biol. Chem. 273, 23984–23992 (1998).

    Article  CAS  Google Scholar 

  8. Cauet, G., Degryse, E., Ledoux, C., Spagnoli, R. & Achstetter, T. Pregnenolone esterification in Saccharomyces cerevisiae. A potential detoxification mechanism. Eur. J. Biochem. 261, 317–324 (1999).

    Article  CAS  Google Scholar 

  9. Dumas, B., Cauet, G., Degryse, E., Spagnoli, R. & Achstetter, T. in Cytochrome P450. 8th International Conference (ed. Lechner, M.C.) 527–530 (John Libbey Eurotext, Montrouge, France 1994).

    Google Scholar 

  10. Shkumatov, V.M. et al. Biotransformation of steroids by a recombinant yeast strain expressing bovine cytochrome P450c17α. Biochemistry (Mosc.) 67, 456–467 (2002).

    Article  CAS  Google Scholar 

  11. Zhang, Y., Dufort, I., Rheault, P. & Luu-The, V. Characterization of a human 20α-hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 25, 221–228 (2000).

    Article  Google Scholar 

  12. Angermayr, M. & Bandlow, W. The general regulatory factor Reb1p controls basal, but not Gal4p- mediated, transcription of the GCY1 gene in yeast. Mol. Gen. Genet. 256, 682–689 (1997).

    Article  CAS  Google Scholar 

  13. Manzella, L., Barros, M.H. & Nobrega, F.G. ARH1 of Saccharomyces cerevisiae: a new essential gene that codes for a protein homologous to the human adrenodoxin reductase. Yeast 14, 839–846 (1998).

    Article  CAS  Google Scholar 

  14. Metherall, J.E., Waugh, K. & Li, H. Progesterone inhibits cholesterol biosynthesis in cultured cells. Accumulation of cholesterol precursors. J. Biol. Chem. 271, 2627–2633 (1996).

    Article  CAS  Google Scholar 

  15. Sakaki, T. et al. Progesterone metabolism in recombinant yeast simultaneously expressing bovine cytochromes P450c17 (CYP17A1) and P450c21 (CYP21B1) and yeast NADPH-P450 oxidoreductase. Pharmacogenetics 1, 86–93 (1991).

    Article  CAS  Google Scholar 

  16. Degryse, E., Cauet, G., Spagnoli, R. & Achstetter, T. Pregnenolone metabolized to 17α-hydroxyprogesterone in yeast: biochemical analysis of a metabolic pathway. J. Steroids Biochem. Mol. Biol. 71, 239–246 (1999).

    Article  CAS  Google Scholar 

  17. Barros, M.H., Nobrega, F.G. & Tzagoloff, A. Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 277, 9997–10002 (2002).

    Article  CAS  Google Scholar 

  18. Milgrom, E. in Hormones (eds. Beaulieu, E.E. & Kelly, P.A.) 387–437 (Herman Publishers in Arts and Science, New York, 1990).

    Google Scholar 

  19. Degryse, E. In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions. Gene 170, 45–50 (1996).

    Article  CAS  Google Scholar 

  20. Burk, D., Dawson, D. & Stearns, T. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Plainview, NY, 2000).

    Google Scholar 

  21. Magdolen, V., Oechsner, U., Trommler, P. & Bandlow, W. Transcriptional control by galactose of a yeast gene encoding a protein homologous to mammalian aldo-keto reductases. Gene 90, 105–114 (1990).

    Article  CAS  Google Scholar 

  22. Thierry, A., Fairhead, C. & Dujon, B. The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase. Yeast 6, 521–534 (1990).

    Article  CAS  Google Scholar 

  23. Struhl, K., Stinchcomb, D.T., Scherer, S. & Davis, R.W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76, 1035–1039 (1979).

    Article  CAS  Google Scholar 

  24. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  Google Scholar 

  25. Kappeli, O., Arreguin, M. & Rieger, M. The respirative breakdown of glucose by Saccharomyces cerevisiae: an assessment of a physiological state. J. Gen. Microbiol. 131, 1411–1416 (1985).

    CAS  PubMed  Google Scholar 

  26. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985).

    Article  CAS  Google Scholar 

  27. Lathe, R., Vilotte, J.L. & Clark, A.J. Plasmid and bacteriophage vectors for excision of intact inserts. Gene 57, 193–201 (1987).

    Article  CAS  Google Scholar 

  28. Bonneaud, N. et al. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7, 609–615 (1991).

    Article  CAS  Google Scholar 

  29. Lacour, T. & Dumas, B. A gene encoding a yeast equivalent of mammalian NADPH-adrenodoxin oxidoreductases. Gene 174, 289–292 (1996).

    Article  CAS  Google Scholar 

  30. Degryse, E., Dumas, B., Dietrich, M., Laruelle, L. & Achstetter, T. In vivo cloning by homologous recombination in yeast using a two-plasmid-based system. Yeast 11, 629–640 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Aventis Pharma France. We are in debt to Jacques Raynaud and the late Jean Pierre Lecocq for starting this innovative project, and to Udo Hedtmann for his continuous support. We also thank Francis Karst and Mike Waterman for providing us with their advice during the many years of this exciting adventure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Dumas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczebara, F., Chandelier, C., Villeret, C. et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21, 143–149 (2003). https://doi.org/10.1038/nbt775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing