Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient gene targeting by homologous recombination in rice

Abstract

Modification of genes through homologous recombination, termed gene targeting, is the most direct method to characterize gene function. In higher plants, however, the method is far from a common practice. Here we describe an efficient and reproducible procedure with a strong positive/negative selection for gene targeting in rice, which feeds more than half of the world's population and is an important model plant. About 1% of selected calli and their regenerated fertile plants were heterozygous at the targeted locus, and only one copy of the selective marker used was found at the targeted site in their genomes. The procedure's applicability to other genes will make it feasible to obtain various gene-targeted lines of rice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for the targeted disruption of the Waxy locus and analysis of homologous recombination events.
Figure 2: Southern blot analysis of the Waxy region and integrated hpt sequence in the six T0 plants.
Figure 3: Segregation of the targeted waxy Hmr allele revealed by phenotypic and PCR analyses.
Figure 4: Southern blot analysis of the Waxy region in the T1 segregants from the targeted T0 heterozygous plant.

Similar content being viewed by others

References

  1. Bennetzen, J.L. & Freeling, M. Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet. 9, 259–261 (1993).

    Article  CAS  Google Scholar 

  2. Gale, M.D. & Devos, K.M. Comparative genetics in the grasses. Proc. Natl. Acad. Sci. USA 95, 1971–1974 (1998).

    Article  CAS  Google Scholar 

  3. Sasaki, T. & Burr, B. International Rice genome sequencing project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–141 (2000).

    Article  CAS  Google Scholar 

  4. Barry, G.F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125, 1164–1165 (2001).

    Article  CAS  Google Scholar 

  5. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002).

    Article  CAS  Google Scholar 

  6. Goff, S.A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002).

    Article  CAS  Google Scholar 

  7. Breyne, P. & Zabeau, M. Genome-wide expression analysis of plant cycle modulated genes. Curr. Opin. Plant Biol. 4, 136–142 (2001).

    Article  CAS  Google Scholar 

  8. Vega, M.A. (ed.) Gene Targeting (CRC Press, Boca Raton, 1995).

    Google Scholar 

  9. Puchta, H. & Hohn, B. From centMorgans to base pairs: homologous recombination in plants. Trends Plant Sci. 1, 340–348 (1996).

    Article  Google Scholar 

  10. Vergunst, A.C. & Hooykaas, P.J.J. Recombination in the plant genome and its application in biotechnology. Crit. Rev. Plant Sci. 18, 1–31 (1999).

    Article  CAS  Google Scholar 

  11. Puchta, H. Gene replacement by homologous recombination in plants. Plant Mol. Biol. 48, 173–182 (2002).

    Article  CAS  Google Scholar 

  12. Paszkowski, J., Baur, M., Bogucki, A. & Potrykus, I. Gene targeting in plants. EMBO J. 7, 4021–4026 (1988).

    Article  CAS  Google Scholar 

  13. Risseeuw, E., Offringa, R., Franke-van Dijk, M.E.I. & Hookaas, P.J.J. Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J. 7, 109–119 (1995).

    Article  CAS  Google Scholar 

  14. Kempin, S.A. et al. Targeted disruption in Arabidopsis. Nature 389, 802–803 (1997).

    Article  CAS  Google Scholar 

  15. Hanin, M. et al. Gene targeting in Arabidopsis. Plant J. 8, 671–677 (2001).

    Google Scholar 

  16. Wang, Z.-Y. et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 7, 613–622 (1995).

    Article  CAS  Google Scholar 

  17. Nagano, H., Wu, L., Kawasaki, S., Kishima, Y. & Sano, Y. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice. Genome 42, 1121–1126 (1999).

    Article  CAS  Google Scholar 

  18. Terada, R. et al. Antisense Waxy genes with highly active promoters efficiently suppress Waxy gene expression in transgenic rice. Plant Cell Physiol. 41, 881–888 (2000).

    Article  CAS  Google Scholar 

  19. Bilang, R., Iida, S., Peterson, A., Potrykus, I. & Paszkowski, J. The 3′-terminal region of the hygromycin-B-resistance gene is important for its activity in Escherichia coli and Nicotiana tabacum. Gene 100, 247–250 (1991).

    Article  CAS  Google Scholar 

  20. Gierl, A., Schwarz-Sommer, Z. & Saedler, H. Molecular interactions between the components of the En-I transposable element system of Zea mays. EMBO J. 4, 579–583 (1985).

    Article  CAS  Google Scholar 

  21. Yagi, T. et al. Homologous recombination at c-fyn locus of mouse embryonic stem cells with use of diphtheria toxin A-fragment gene in negative selection. Proc. Natl. Acad. Sci. USA 87, 9918–9922 (1990).

    Article  CAS  Google Scholar 

  22. McElory, D., Blowers, A.D., Jenes, B. & Wu, R. Construction of expression vectors based on the rice actin (Act1) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231, 150–160 (1991).

    Article  Google Scholar 

  23. Takimoto, I., Christensen, A.H., Quail, P.H., Uchimiya, H. & Toki, S. Non-systemic expression of a stress-responsive maize polyubiquitin gene (UBI-1) in transgenic rice plants. Plant Mol. Biol. 26, 1007–1012 (1994).

    Article  CAS  Google Scholar 

  24. Tanaka, A. et al. Enhancement of foreign gene expression by a dicot intron in rice but not tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Res. 18, 6767–6770 (1990).

    Article  CAS  Google Scholar 

  25. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994).

    Article  CAS  Google Scholar 

  26. Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A. & Iida, S. Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory. Mol. Gen. Genet. 261, 447–451 (1999).

    Article  CAS  Google Scholar 

  27. Hohn, B., Levy, A.A. & Puchta, H. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12, 139–143 (2001).

    Article  CAS  Google Scholar 

  28. Srivastava, V. & Ow, D.W. Biolistic mediated site-specific integration in rice. Mol. Breed. 8, 345–350 (2002).

    Article  Google Scholar 

  29. Saalbach, I. et al. A chimeric gene encoding the methionine-rich 2S albumin of the Brazil nut (Bertholletia excelsa H.B.K.) is stably expressed and inherited in transgenic grain legume. Mol. Gen. Genet. 242, 226–236 (1994).

    Article  CAS  Google Scholar 

  30. Yamaguchi, T. et al. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol. 42, 451–461 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Asao and M. Matsumoto for technical assistance, B. Burr and F. Burr for reading the manuscript, R. Bilang, A. Gierl, S. Kawasaki, Y. Kishima, J. Leemans, H. Nagano, K. Nakamura, Y. Sano, H. Uchimiya, and T. Yagi for providing plasmids and DNAs used for constructing vectors, and H.-Q. Li, A. Hoshino, and Y. Kishima for discussion. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Iida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terada, R., Urawa, H., Inagaki, Y. et al. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20, 1030–1034 (2002). https://doi.org/10.1038/nbt737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing