Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection

Abstract

Modular polyketide synthases (PKSs) are giant bacterial enzymes that synthesize many polyketides of therapeutic value. In contrast to PKSs that provide acyltransferase (AT) activities in cis, trans-AT PKSs lack integrated AT domains and exhibit unusual enzymatic features with poorly understood functions in polyketide assembly. This has retarded insight into the assembly of products such as mupirocin, leinamycin and bryostatin 1. We show that trans-AT PKSs evolved in a fundamentally different fashion from cis-AT systems, through horizontal recruitment and assembly of substrate-specific ketosynthase (KS) domains. The insights obtained from analysis of these KS mosaics will facilitate both the discovery of novel polyketides by genome mining, as we demonstrate for the thailandamides of Burkholderia thailandensis, and the extraction of chemical information from short trans-AT PCR products, as we show using metagenomic DNA of marine sponges. Our data also suggest new strategies for dissecting polyketide biosynthetic pathways and engineering polyketide assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions taking place during a single round of polyketide elongation in a type I cis-AT PKS module.
Figure 2: Polyketides generated by trans-AT PKSs.
Figure 3: Bayesian cladogram of full-length KS domains from trans-AT PKSs.
Figure 4: KS-based prediction of substrate specificities in two trans-AT PKS pathways.
Figure 5: Analysis of a previously uncharacterized polyketide from B. thailandensis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99, 14002–14007 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mochizuki, S. et al. The large linear plasmid pSLA2-L of Streptomyces rochei has an unusually condensed gene organization for secondary metabolism. Mol. Microbiol. 48, 1501–1510 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X.H. et al. Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J. Bacteriol. 188, 4024–4036 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 70, 67–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Perlova, O., Gerth, K., Kaiser, O., Hans, A. & Müller, R. Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. J. Biotechnol. 121, 174–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, Y.Q., Tang, G.L. & Shen, B. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proc. Natl. Acad. Sci. USA 100, 3149–3154 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider, K. et al. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. J. Nat. Prod. 70, 1417–1423 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. El-Sayed, A.K. et al. Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem. Biol. 10, 419–430 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Simunovic, V. et al. Myxovirescin A biosynthesis is directed by hybrid polyketide synthases/nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl-CoA synthases, and trans-acting acyltransferases. ChemBioChem 7, 1206–1220 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Paitan, Y., Alon, G., Orr, E., Ron, E.Z. & Rosenberg, E. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J. Mol. Biol. 286, 465–474 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Partida-Martinez, L.P. & Hertweck, C. A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. ChemBioChem 8, 41–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Pulsawat, N., Kitani, S. & Nihira, T. Characterization of biosynthetic gene cluster for the production of virginiamycin M, a streptogramin type A antibiotic, in Streptomyces virginiae. Gene 393, 31–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Piel, J., Hui, D., Fusetani, N. & Matsunaga, S. Targeting polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 6, 921–927 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Wenzel, S.C. & Müller, R. Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. Curr. Opin. Chem. Biol. 9, 447–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Jenke-Kodama, H., Börner, T. & Dittmann, E. Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PloS Comput. Biol. 2, e132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jenke-Kodama, H., Sandmann, A., Müller, R. & Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22, 2027–2039 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Fieseler, L. et al. Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl. Environ. Microbiol. 73, 2144–2155 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huelsenbeck, J.P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ginolhac, A. et al. Type I polyketide synthases may have evolved through horizontal gene transfer. J. Mol. Evol. 60, 716–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Lopez, J.V. Naturally mosaic operons for secondary metabolite biosynthesis: variability and putative horizontal transfer of discrete catalytic domains of the epothilone polyketide synthase locus. Mol. Genet. Genomics 270, 420–431 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Davies, C., Heath, R.J., White, S.W. & Rock, C.O. The 1.8 angstrom crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from Escherichia coli. Structure 8, 185–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Calderone, C.T., Kowtoniuk, W.E., Kelleher, N.L., Walsh, C.T. & Dorrestein, P.C. Convergence of isoprene and polyketide biosynthetic machinery: Isoprenyl-S-carrier proteins in the pksX pathway of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 103, 8977–8982 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albertini, A.M., Caramori, T., Scoffone, F., Scotti, C. & Galizzi, A. Sequence around the 159° region of the Bacillus subtilis genome: the pksX locus spans 33.6 Kb. Microbiology 141, 299–309 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Patel, P.S. et al. Bacillaene, a novel inhibitor of prokaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physicochemical characterization and biological activity. J. Antibiot. 48, 997–1003 (1995).

    Article  CAS  Google Scholar 

  27. Butcher, R.A. et al. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104, 1506–1509 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Partida-Martinez, L.P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Piel, J., Wen, G., Platzer, M. & Hui, D. Unprecedented diversity of catalytic domains in the first four modules of the putative pederin polyketide synthase. ChemBioChem 5, 93–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Kroken, S., Glass, N.L., Taylor, J.W., Yoder, O.C. & Turgeon, B.G. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA 100, 15670–15675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moffitt, M.C. & Neilan, B.A. Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. J. Mol. Evol. 56, 446–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Hopwood, D.A. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465–2497 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Challis, G.L., Ravel, J. & Townsend, C.A. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Tang, Y. & Kim, C.Y. Mathews, II, Cane, D.E. & Khosla, C. The 2.7-angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc. Natl. Acad. Sci. USA 103, 11124–11129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Finking, R. & Marahiel, M.A. Biosynthesis of nonribosomal peptides. Annu. Rev. Microbiol. 58, 453–488 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Stewart, G.J. & Carlson, C.A. The biology of natural transformation. Annu. Rev. Microbiol. 40, 211–235 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E coli. Science 291, 1790–1792 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Moldenhauer, J., Chen, X., Borriss, R. & Piel, J. Biosynthesis of the antibiotic bacillaene, the product of a giant polyketide synthase complex of the trans-AT family. Angew. Chem. Int. Edn Engl. 46, 8195–8197 (2007).

    Article  CAS  Google Scholar 

  41. Suwa, M. et al. Identification of two polyketide synthase gene clusters on the linear plasmid pSLA2-L in Streptomyces rochei. Gene 246, 123–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Gross, H. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl. Microbiol. Biotechnol. 75, 267–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zazopoulos, E. et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat. Biotechnol. 21, 187–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. McAlpine, J.B. et al. Microbial Genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J. Nat. Prod. 68, 493–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Donia, M.S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691–699 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Felsenstein, J. PHYLIP - Phylogeny Inference Package version 3.6. Cladistics 5, 164–166 (1989).

    Google Scholar 

  50. Hrvatin, S. & Piel, J. Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J. Microbiol. Methods 68, 434–436 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andrea Perner, Heike Heinecke and Franziska Rhein for HRMS and NMR measurements, Daniela Werler for sequencing assistance, Martin Roth and Matthias Steinacker of the BioPilotPlant for assistance in fermentation and extraction, and Shigeki Matsunaga for a specimen of the sponge T. swinhoei. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (PI 430/1-3 and SFB 624 to J.P. and grants of the priority programs SPP1152: PI 430/5-2, Di 910/1-3 He 3268/2-3 to J.P., E.D. and C.H., respectively).

Author information

Authors and Affiliations

Authors

Contributions

J.P. designed research, performed alignments and phylogenetic calculations, analyzed data and wrote the manuscript; H.J.-K. and E.D. designed research and performed phylogenetic analysis; T.H. analyzed sequence data; T.N. and C.G. isolated and analyzed the PKS cluster from the sponge metagenome; S.T. and M.P. performed sequencing, C.H. designed research and analyzed data, K.I. isolated and characterized thailandamides.

Corresponding author

Correspondence to Jörn Piel.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Data 1,2; Table 1 (PDF 1533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Ishida, K., Jenke-Kodama, H. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26, 225–233 (2008). https://doi.org/10.1038/nbt1379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing