Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors

Abstract

We describe a chemical proteomics approach to profile the interaction of small molecules with hundreds of endogenously expressed protein kinases and purine-binding proteins. This subproteome is captured by immobilized nonselective kinase inhibitors (kinobeads), and the bound proteins are quantified in parallel by mass spectrometry using isobaric tags for relative and absolute quantification (iTRAQ). By measuring the competition with the affinity matrix, we assess the binding of drugs to their targets in cell lysates and in cells. By mapping drug-induced changes in the phosphorylation state of the captured proteome, we also analyze signaling pathways downstream of target kinases. Quantitative profiling of the drugs imatinib (Gleevec), dasatinib (Sprycel) and bosutinib in K562 cells confirms known targets including ABL and SRC family kinases and identifies the receptor tyrosine kinase DDR1 and the oxidoreductase NQO2 as novel targets of imatinib. The data suggest that our approach is a valuable tool for drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kinobeads use immobilized kinase inhibitors as affinity reagents.
Figure 2: Kinobeads coverage of the kinome.
Figure 3: Proteomic profiling of drugs in cell lysate by a kinobeads competition assay.
Figure 4: Targets of imatinib.
Figure 5: Phosphorylation analysis of kinobead-captured proteins to assess targets and downstream effects of imatinib.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hall, S.E. Chemoproteomics-driven drug discovery: addressing high attrition rates. Drug Discov. Today 11, 495–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Morphy, R., Kay, C. & Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, P. Protein kinases–the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1, 309–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, Y. & Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2, 358–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Daub, H., Specht, K. & Ullrich, A. Strategies to overcome resistance to targeted protein kinase inhibitors. Nat. Rev. Drug Discov. 3, 1001–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Mol, C.D., Fabbro, D. & Hosfield, D.J. Structural insights into the conformational selectivity of STI-571 and related kinase inhibitors. Curr. Opin. Drug Discov. Devel. 7, 639–648 (2004).

    CAS  PubMed  Google Scholar 

  7. Fabbro, D. & Garcia-Echeverria, C. Targeting protein kinases in cancer therapy. Curr. Opin. Drug Discov. Devel. 5, 701–712 (2002).

    CAS  PubMed  Google Scholar 

  8. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Haystead, T.A. The purinome, a complex mix of drug and toxicity targets. Curr. Top. Med. Chem. 6, 1117–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Fabian, M.A. et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Fliri, A.F., Loging, W.T., Thadeio, P.F. & Volkmann, R.A. Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nat. Chem. Biol. 1, 389–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Szardenings, K., Li, B., Ma, L. & Wu, M. Fishing for targets: novel approaches using small molecule baits. Drug Discov. Today: Technologies 3, 9–15 (2004).

    Article  Google Scholar 

  13. Godl, K. et al. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. USA 100, 15434–15439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knockaert, M. et al. Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem. Biol. 7, 411–422 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Hantschel, O. & Superti-Furga, G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Weisberg, E., Manley, P.W., Cowan-Jacob, S.W., Hochhaus, A. & Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat. Rev. Cancer 7, 345–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rappsilber, J., Ryder, U., Lamond, A.I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wissing, J. et al. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol. Cell. Proteomics 3, 1181–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Graves, P.R. et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol. Pharmacol. 62, 1364–1372 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Golas, J.M. et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 63, 375–381 (2003).

    CAS  PubMed  Google Scholar 

  24. Kantarjian, H., Jabbour, E., Grimley, J. & Kirkpatrick, P. Dasatinib. Nat. Rev. Drug Discov. 5, 717–718 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Druker, B.J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Carter, T.A. et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc. Natl. Acad. Sci. USA 102, 11011–11016 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kowanetz, K. et al. Suppressors of T-cell receptor signaling Sts-1 and Sts-2 bind to Cbl and inhibit endocytosis of receptor tyrosine kinases. J. Biol. Chem. 279, 32786–32795 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Tuveson, D.A. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Su, A.I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA 99, 4465–4470 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L'hote, C.G., Thomas, P.H. & Ganesan, T.S. Functional analysis of discoidin domain receptor 1: effect of adhesion on DDR1 phosphorylation. FASEB J. 16, 234–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Vella, F., Ferry, G., Delagrange, P. & Boutin, J.A. NRH:quinone reductase 2: an enzyme of surprises and mysteries. Biochem. Pharmacol. 71, 1–12 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Knox, R.J. et al. Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy. Cancer Res. 60, 4179–4186 (2000).

    CAS  PubMed  Google Scholar 

  33. Patricelli, M.P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Knight, Z.A. & Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol. 12, 621–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Buchdunger, E. et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 56, 100–104 (1996).

    CAS  PubMed  Google Scholar 

  36. Lombardo, L.J. et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 47, 6658–6661 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lowe, C.R., Harvey, M.J., Craven, D.B. & Dean, P.D. Some parameters relevant to affinity chromatography on immobilized nucleotides. Biochem. J. 133, 499–506 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vogel, W.F., Abdulhussein, R. & Ford, C.E. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell. Signal. 18, 1108–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ongusaha, P.P. et al. p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO J. 22, 1289–1301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rossler, J., Zambrzycka, I., Lagodny, J., Kontny, U. & Niemeyer, C.M. Effect of STI-571 (imatinib mesylate) in combination with retinoic acid and gamma-irradiation on viability of neuroblastoma cells. Biochem. Biophys. Res. Commun. 342, 1405–1412 (2006).

    Article  PubMed  Google Scholar 

  41. Avivi-Green, C., Singal, M. & Vogel, W.F. Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 174, 420–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Daniels, C.E. et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest. 114, 1308–1316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kneidinger, M. et al. Dasatinib (BMS354825) inhibits IgE-dependent activation and histamine release in human blood basophils. Blood 108 Abs. 1365 (2006).

    Google Scholar 

  44. Shah, N.P. et al. Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis. Blood 108, 286–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, T.T., Xiong, Q., Graef, I.A., Crabtree, G.R. & Chow, C.W. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol. Cell. Biol. 25, 907–920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Drewes, G. et al. Process for the identification of novel enzyme interacting compounds. Patent WO 2006/134056 A1 (2006).

  47. Boschelli, D.H. et al. 7-Alkoxy-4-phenylamino-3-quinolinecar-bonitriles as dual inhibitors of Src and Abl kinases. J. Med. Chem. 47, 1599–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Das, J. et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem. 49, 6819–6832 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Pozuelo, R.M., Campbell, D.G., Morrice, N.A. & Mackintosh, C. Phosphodiesterase 3A binds to 14–3-3 proteins in response to PMA-induced phosphorylation of Ser428. Biochem. J. 392, 163–172 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a grant from the German Bundesministerium fuer Bildung und Forschung (BMBF BioChancePLUS grant 0313335A). We would like to thank Charles Cohen, Tim Edwards, David Middlemiss, Markus Schirle, David Simmons and Francis Wilson for helpful discussions and support. We are grateful to Birgit Duempelfeld, Eva-Maria Kashammer-Lorenz, Jana Krause, Anja Podszuweit, Tatjana Rudi and Thilo Werner for expert technical assistance, to Svenja Burckhardt and Cyrille Boussard for the synthesis of compounds, to Michael Rinner, Judith Schlegl and Marianna Stabilini for database and IT tool development, and to Frank Weisbrodt for help with the figures. We would also like to thank Oliver Hantschel and Giulio Superti-Furga for stimulating discussions and valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Kuster or Gerard Drewes.

Ethics declarations

Competing interests

The authors are employees of Cellzome AG or Cellzome, UK, Ltd. These companies funded the work.

Supplementary information

Supplementary Text and Figures

Figure 1–5, Tables 1–11, Methods, Data (PDF 2257 kb)

Supplementary Table 10

Peptide identification data collected in the experiments shown in Fig. 1 and Supplementary Fig. 1 (TXT 5210 kb)

Supplementary Table 11

Peptide identification data collected in the quantitative experiments shown in Fig. 3b and Fig. 3c. (TXT 16370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bantscheff, M., Eberhard, D., Abraham, Y. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25, 1035–1044 (2007). https://doi.org/10.1038/nbt1328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing