Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Programmable ligand-controlled riboregulators of eukaryotic gene expression

Abstract

Recent studies have demonstrated the importance of noncoding RNA elements in regulating gene expression networks1,2. We describe the design of a class of small trans-acting RNAs that directly regulate gene expression in a ligand-dependent manner. These allosteric riboregulators, which we call antiswitches, are made fully tunable and modular by rational design. They offer flexible control strategies by adopting active or inactive forms in response to ligand binding, depending on their design. They can be tailor-made to regulate the expression of target transcripts in response to different cellular effectors. Coupled with in vitro selection technologies for generating nucleic acid ligand-binding species3,4, antiswitches present a platform for programming cellular behavior and genetic networks with respect to cellular state and environmental stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and functional activity of an antiswitch regulator.
Figure 2: Tuning and expanding the switch response of an antiswitch regulator.
Figure 3: Redesign and characterization of an 'on' antiswitch regulator.
Figure 4: Simultaneous regulation of multiple genes through multiple antiswitch regulators.

Similar content being viewed by others

References

  1. Banerjee, D. & Slack, F. Control of developmental timing by small temporal RNAs: a paradigm for RNA-mediated regulation of gene expression. Bioessays 24, 119–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kramer, C., Loros, J.J., Dunlap, J.C. & Crosthwaite, S.K. Role for antisense RNA in regulating circadian clock function in Neurospora crassa. Nature 421, 948–952 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Good, L. Diverse antisense mechanisms and applications. Cell. Mol. Life Sci. 60, 823–824 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Good, L. Translation repression by antisense sequences. Cell. Mol. Life Sci. 60, 854–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Vacek, M., Sazani, P. & Kole, R. Antisense-mediated redirection of mRNA splicing. Cell. Mol. Life Sci. 60, 825–833 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Scherer, L. & Rossi, J.J. Recent applications of RNAi in mammalian systems. Curr. Pharm. Biotechnol. 5, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lilley, D.M. The origins of RNA catalysis in ribozymes. Trends Biochem. Sci. 28, 495–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Mandal, M. & Breaker, R.R. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11, 29–35 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Winkler, W., Nahvi, A. & Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Barrick, J.E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Lavorgna, G. et al. In search of antisense. Trends Biochem. Sci. 29, 88–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Hermann, T. & Patel, D.J. Adaptive recognition by nucleic acid aptamers. Science 287, 820–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Cox, J.C. et al. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jhaveri, S., Rajendran, M. & Ellington, A.D. In vitro selection of signaling aptamers. Nat. Biotechnol. 18, 1293–1297 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Roth, A. & Breaker, R.R. Selection in vitro of allosteric ribozymes. Methods Mol. Biol. 252, 145–164 (2004).

    CAS  PubMed  Google Scholar 

  21. Stojanovic, M.N. & Kolpashchikov, D.M. Modular aptameric sensors. J. Am. Chem. Soc. 126, 9266–9270 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Smolke, C.D., Carrier, T.A. & Keasling, J.D. Coordinated, differential expression of two genes through directed mRNA cleavage and stabilization by secondary structures. Appl. Environ. Microbiol. 66, 5399–5405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Yen, L. et al. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Buskirk, A.R., Landrigan, A. & Liu, D.R. Engineering a ligand-dependent RNA transcriptional activator. Chem. Biol. 11, 1157–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Weiss, B., Davidkova, G. & Zhou, L.W. Antisense RNA gene therapy for studying and modulating biological processes. Cell. Mol. Life Sci. 55, 334–358 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Scherer, L.J. & Rossi, J.J. Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol. 21, 1457–1465 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Nutiu, R. & Li, Y. Structure-switching signaling aptamers. J. Am. Chem. Soc. 125, 4771–4778 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Zimmermann, G.R., Wick, C.L., Shields, T.P., Jenison, R.D. & Pardi, A. Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA 6, 659–667 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zimmermann, G.R., Jenison, R.D., Wick, C.L., Simorre, J.P. & Pardi, A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat. Struct. Biol. 4, 644–649 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Gouda, H., Kuntz, I.D., Case, D.A. & Kollman, P.A. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Biopolymers 68, 16–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Mathews, D.H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. USA 101, 7287–7292 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taira, K., Nakagawa, K., Nishikawa, S. & Furukawa, K. Construction of a novel RNA-transcript-trimming plasmid which can be used both in vitro in place of run-off and (G)-free transcriptions and in vivo as multi-sequences transcription vectors. Nucleic Acids Res. 19, 5125–5130 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samarsky, D.A. et al. A small nucleolar RNA: ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. Proc. Natl. Acad. Sci. USA 96, 6609–6614 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mateus, C. & Avery, S.V. Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16, 1313–1323 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Koch, A.L. The metabolism of methylpurines by Escherichia coli. I. Tracer studies. J. Biol. Chem. 219, 181–188 (1956).

    CAS  PubMed  Google Scholar 

  37. Berens, C., Thain, A. & Schroeder, R. A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9, 2549–2556 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Watkins, S.M. & German, J.B. Metabolomics and biochemical profiling in drug discovery and development. Curr. Opin. Mol. Ther. 4, 224–228 (2002).

    CAS  PubMed  Google Scholar 

  40. Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sambrook, J. & Russell, D.W. Molecular cloning: a laboratory manual, edn. 3 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001).

    Google Scholar 

  43. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gietz, R. & Woods, R. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. in Guide to Yeast Genetics and Molecular and Cell Biology, Part B, vol. 350 (eds. Guthrie, C. & Fink, G.) 87–96 (Academic Press, San Diego, 2002).

    Chapter  Google Scholar 

  45. Caponigro, G., Muhlrad, D. & Parker, R. A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol. 13, 5141–5148 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.V. Avery, A. Miyawaki and K. Weis for providing genes and plasmids used in assembling the constructs described in this work. This work was supported by startup funds provided by the California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina D Smolke.

Ethics declarations

Competing interests

The authors have a pending patent application whose value may be affected by the publication of this manuscript.

Supplementary information

Supplementary Fig. 1

Sequence and cleavage mechanism of ncRNA expression construct. (PPT 49 kb)

Supplementary Fig. 2

Structural probing of antiswitch s1 through nuclease mapping. (PPT 49 kb)

Supplementary Fig. 3

Sequences and predicted structures of antiswitches s5, s6, and s7 in the absence of ligand binding. (PPT 67 kb)

Supplementary Fig. 4

Sequence and structural switching of a tetracycline-responsive Venus (YFP) regulator, s9, and its target mRNA. (PPT 68 kb)

Supplementary Fig. 5

Set of plasmids used in the in vivo antiswitch characterization studies. (PPT 55 kb)

Supplementary Table 1

Relative RNA levels of target mRNA and antiswitch s1. (PPT 20 kb)

Supplementary Table 2

List of plasmids used in this study. (PPT 39 kb)

Supplementary Table 3

Sequences of antiswitch constructs, controls, and qRT-PCR primers used in this study. (PPT 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, T., Smolke, C. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23, 337–343 (2005). https://doi.org/10.1038/nbt1069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing