Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microfluidic sorting of mammalian cells by optical force switching

Abstract

Microfluidic-based devices have allowed miniaturization and increased parallelism of many common functions in biological assays; however, development of a practical technology for microfluidic-based fluorescence-activated cell sorting has proved challenging. Although a variety of different physical on-chip switch mechanisms have been proposed1,2,3,4,5,6, none has satisfied simultaneously the requirements of high throughput, purity, and recovery of live, unstressed mammalian cells. Here we show that optical forces can be used for the rapid (2–4 ms), active control of cell routing on a microfluidic chip. Optical switch controls reduce the complexity of the chip and simplify connectivity. Using all-optical switching, we have implemented a fluorescence-activated microfluidic cell sorter and evaluated its performance on live, stably transfected HeLa cells expressing a fused histone–green fluorescent protein. Recovered populations were verified to be both viable and unstressed by evaluation of the transcriptional expression of two genes, HSPA6 and FOS, known indicators of cellular stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layout of the microfluidic sorting junction and the optical switch.
Figure 2: Cell sorting with an optically switched microfluidic fluorescence-activated cell sorter.
Figure 3: Evaluation of stress levels of optically switched cells.

Similar content being viewed by others

References

  1. Li, P.C.H. & Harrison, D.J. Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568 (1997).

    Article  CAS  Google Scholar 

  2. Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H. & Quake, S.R. A microfabricated fluorescence-activated cell sorter. Nat. Biotechnol. 17, 1109–1111 (1999).

    Article  CAS  Google Scholar 

  3. Dittrich, P.S. & Schwille, P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem. 75, 5767–5774 (2003).

    Article  CAS  Google Scholar 

  4. Fiedler, S., Shirley, S.G., Schnelle, T. & Fuhr, G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998).

    Article  CAS  Google Scholar 

  5. Fu, A.Y., Chou, H.-P., Spence, C., Arnold, F.H. & Quake, S.R. An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457 (2002).

    Article  CAS  Google Scholar 

  6. Wolff, A. et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3, 22–27 (2003).

    Article  CAS  Google Scholar 

  7. Shapiro, H.M. Practical flow cytometry (Wiley-Liss, New York, 2003).

    Book  Google Scholar 

  8. Inoue, I., Wakamoto, Y., Moriguchi, H., Okano, K. & Yasuda, K. On-chip culture system for observation of isolated individual cells. Lab Chip 1, 50–55 (2001).

    Article  CAS  Google Scholar 

  9. Schilling, E.A., Kamholz, A.E. & Yager, P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804 (2002).

    Article  CAS  Google Scholar 

  10. McClain, M.A. et al. Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655 (2003).

    Article  CAS  Google Scholar 

  11. Waters, L.C. et al. Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem. 70, 158–162 (1998).

    Article  CAS  Google Scholar 

  12. Kopp, M.U., de Mello, A.J. & Manz, A. Chemical amplification: continuous-flow PCR on a chip. Science 280, 1046–1048 (1998).

    Article  CAS  Google Scholar 

  13. Buican, T.N. et al. Automated single-cell manipulation and sorting by light trapping. Appl. Opt. 26, 5311–5316 (1987).

    Article  CAS  Google Scholar 

  14. Ashkin, A. & Dziedzic, J.M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987).

    Article  CAS  Google Scholar 

  15. Ashkin, A., Dziedzic, J.M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    Article  CAS  Google Scholar 

  16. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  CAS  Google Scholar 

  17. Wang, M.M. et al. Integration of optoelectronic array devices for cell transport and sorting. Proc. SPIE 4260, 68–73 (2001).

    Article  Google Scholar 

  18. MacDonald, M.P., Spalding, G.C. & Dholakia, K. Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003).

    Article  CAS  Google Scholar 

  19. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  Google Scholar 

  20. Seidl, J., Knuechel, R. & Kunz-Schughart, L.A. Evaluation of membrane physiology following fluorescence activated or magnetic cell separation. Cytometry 36, 102–111 (1999).

    Article  CAS  Google Scholar 

  21. Liu, Y., Sonek, G.J., Berns, M.W. & Tromberg, B.J. Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys. J. 71, 2158–2167 (1996).

    Article  CAS  Google Scholar 

  22. Liang, H. et al. Wavelength dependence of cell cloning efficiency after optical trapping. Biophys. J. 70, 1529–1533 (1996).

    Article  CAS  Google Scholar 

  23. Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K. & Block, S.M. Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999).

    Article  CAS  Google Scholar 

  24. Mohanty, S.K., Rapp, A., Monajembashi, S., Gupta, P.K. & Greulich, K.O. Comet assay measurements of DNA damage in cells by laser microbeams and trapping beams with wavelengths spanning a range of 308 nm to 1064 nm. Radiat. Res. 157, 378–385 (2002).

    Article  CAS  Google Scholar 

  25. Leitz, G., Fällman, E., Tuck, S. & Axner, O. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys. J. 82, 2224–2231 (2002).

    Article  CAS  Google Scholar 

  26. Kregel, K.C. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 92, 2177–2186 (2002).

    Article  CAS  Google Scholar 

  27. Sonna, L.A. et al. Selected contribution: effect of acute heat shock on gene expression by human peripheral blood mononuclear cells. J. Appl. Physiol. 92, 2208–2220 (2002).

    Article  CAS  Google Scholar 

  28. Gabai, V.L. & Sherman, M.Y. Interplay between molecular chaperones and signaling pathways in survival of heat shock. J. Appl. Physiol. 92, 1743–1748 (2002).

    Article  CAS  Google Scholar 

  29. Verma, I.M. & Sassone-Corsi, P. Proto-oncogene fos: complex but versatile regulation. Cell 51, 513–514 (1987).

    Article  CAS  Google Scholar 

  30. Bukh, A., Martinez-Valdez, H., Freedman, S.J., Freedman, M.H. & Cohen, A. The Expression of c-fos, c-jun, and c-myc genes is regulated by heat shock in human lymphoid cells. J. Immunol. 144, 4835–4840 (1990).

    CAS  PubMed  Google Scholar 

  31. Hsieh, H.J., Li, N.Q. & Frangos, J.A. Pulsatile and steady flow induces c-fos expression in human endothelial cells. J. Cell. Physiol. 154, 143–151 (1993).

    Article  CAS  Google Scholar 

  32. Nollert, M.U., Panaro, N.J. & McIntire, L.V. Regulation of genetic expression in shear stress-stimulated endothelial cells. Ann. NY Acad. Sci. 665, 94–104 (1992).

    Article  CAS  Google Scholar 

  33. Fan, Z.H. & Harrison, D.J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Anal. Chem. 66, 177–184 (1994).

    Article  CAS  Google Scholar 

  34. Zinck, R. et al. Protein synthesis inhibitors reveal differential regulation of mitogen-activated protein kinase and stress-activated protein kinase pathways that converge on Elk-1. Mol. Cell. Biol. 15, 4930–4938 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Pamela Rose for preparation of the cells and Mirianas Chachisvillis for helpful discussions. H2B-GFP transfected HeLa cells were obtained from the Salk Institute. This work was supported in part by Defense Advanced Research Projects Agency (DARPA) contract No. DAAH01-03-C-R184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe J Marchand.

Ethics declarations

Competing interests

All authors were employees of Genoptix, Inc. while contributing to this work.

Supplementary information

Supplementary Table 1

Percentage of viable cells measured by trypan blue exclusion after flowing through the cell sorter (PDF 10 kb)

Supplementary Table 2

Comparison of light exposure levels of near-IR optical tweezers observed tocause damage in cells vs. light exposure in the optically-switched cell sorter (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Tu, E., Raymond, D. et al. Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23, 83–87 (2005). https://doi.org/10.1038/nbt1050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing