Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens

Abstract

Transformants of maize inbred A188 were efficiently produced from immature embryos cocultivated with Agrobacterium tumefaciens that carried “super-binary” vectors. Frequencies of transformation (independent transgenic plants/embryos) were between 5% and 30%. Almost all transformants were normal in morphology, and more than 70% were fertile. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. Between one and three copies of the transgenes were integrated with little rearrangement, and the boundaries of T-DNA were similar to those in transgenic dicotyledons and rice. F1 hybrids between A188 and five other inbreds were transformed at low frequencies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. De Cleene, M. and Deley, J. 1976. The host range of crown gall. Bot. Rev. 42: 389–466.

    Article  Google Scholar 

  2. Grimsley, N., Hohn, T., Davies, J.W. and Hohn, B. 1987. Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177–179.

    Article  CAS  Google Scholar 

  3. Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Peterson, G. and Smith, R.H. 1991. Transformation of Zea mays L using Agrobacterium tufemaciens and the shoot apex. Plant Physiol. 95: 426–434.

    Article  CAS  Google Scholar 

  4. Shen, W.-H., Escudero, J., Schläppi, M., Ramos, C., Hohn, B. and KoukolikoväNicola, Z. 1993. T-DNA transfer to maize cells: Histochemical investigation of β-glucuronidase activity in maize tissues. Proc. Natl. Acad. Sci. USA 90: 1488–1492.

    Article  CAS  Google Scholar 

  5. Chan, M.-T., Lee, T.-M. and Chang, H.-H. 1992. Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiol. 33: 577–583.

    CAS  Google Scholar 

  6. Chan, M.-T., Chang, H.-H., Ho, S.-L., Tong, W.-F. and Yu, S.-M. 1993. Agrobacterium-mediated production of transgenic rice plants expessing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 22: 491–506.

    Article  CAS  Google Scholar 

  7. Mooney, P.A., Goodwin, P.B., Dennis, E.S. and Llewellyn, D.J. 1991. Agrobacterium tumafiens-gene transfer into wheat tissues. Plant Cell Tissue Organ Cult. 25: 209–218.

    CAS  Google Scholar 

  8. Hiei, Y., Ohta, S., Komari, T. and Kumasho, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6: 271–282.

    Article  CAS  Google Scholar 

  9. Armstrong, C.L. and Green, C.E. 1985. Established and maintenance of friable, embrygenic maize callus and the involvement of L-proline. Planta 164: 207–214.

    Article  CAS  Google Scholar 

  10. Koziel, M.G. et al. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thurigiensis . Bio/Technology 11: 194–200.

    CAS  Google Scholar 

  11. Wan, Y., Widholdm, J.M. and Lemaux, P.G. 1995. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.) Planta 196: 7–14.

    Article  CAS  Google Scholar 

  12. Frame, B.R., Drayton, P.R., Bagnall, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, J.A. and Wang, K. 1994. Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. The Plant Journal 6: 941–948.

    Article  CAS  Google Scholar 

  13. D'Halluin, K., Bonne, E., Bossut, M., Beuckeleer, M.D. and Leemans, J. 1992. Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.

    Article  CAS  Google Scholar 

  14. Chu, C.-C. 1978. The N6 medium and its applications to anther culture of cereal crops, pp. 43–50 in Proc. Symp. Plant Tissue Culture. Science Press, Peking.

    Google Scholar 

  15. Linsmaier, E. and Skoog, F. 1965. Organic growth factor requirements of tobacco tissue culture. Physiol. Plant. 18: 100–127.

    Article  CAS  Google Scholar 

  16. Does, M.R., Dekker, B.M.M., de Groot, M.J.A., and Offringa, R. 1991. A quick method to estimate the T-DNA copy number i transgenic plants at an early stage after transformation, using inverse PCR. Plant Mol. Biol. 17: 151–153.

    Article  CAS  Google Scholar 

  17. Yadav, N.S., Vanderleyden, J., Bennett, D.R., Barnes, W.M. and Chilton, M.D. 1982. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc. Natl. Acad. Sci. USA 79: 6322–6326.

    Article  CAS  Google Scholar 

  18. Zambryski, P., Depicker, A., Kruger, K. and Goodman, H.M. 1982. Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J. Mol. Appl. Genet. 1: 361–370.

    CAS  Google Scholar 

  19. Ohta, S., Mita, S., Hattori, T. and Nakamura, K. 1990. Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol. 31: 805–813.

    CAS  Google Scholar 

  20. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. 1988. Genetically transformed maize plants from protoplasts. Science 240: 204–207.

    Article  CAS  Google Scholar 

  21. Gordon-Kamm, W.J. et al. 1990. Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2: 603–618.

    Article  CAS  Google Scholar 

  22. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T.M. 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    CAS  Google Scholar 

  23. Walters, D.A., Vetsch, C.S., Potts, D.E. and Lundquist, R.C. 1992. Transformation and inheritance of a hygromycin phosphotansferase gene in maize plants. Plant Mol. Biol. 18: 189–200.

    Article  CAS  Google Scholar 

  24. Komari, T. 1990. Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9: 303–306.

    Article  CAS  Google Scholar 

  25. Denecke, J., Goselé, J., Botterman, J. and Cornelissen, M. 1989. Quantitative analysis of transiently expressed genes in plant cells. Methods in Molecular and Cellular Biology 1: 19–27.

    CAS  Google Scholar 

  26. Ditta, G., Stanfield, S., Corbin, D. and Helinski, D.R. 1980. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti . Proc. Natl. Acad. Sci. USA 77: 7347–7351.

    Article  CAS  Google Scholar 

  27. Komari, T., Saito, Y., Nakakido, F. and Kumashiro, T. 1989. Efficient selection of somatic hybrids in Nicotiana tabacum L. using a combination of drug-resistance markers introduced by transformation. Theor. Appl. Genet. 77: 547–552.

    Article  CAS  Google Scholar 

  28. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  29. Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, Y., Saito, H., Ohta, S. et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14, 745–750 (1996). https://doi.org/10.1038/nbt0696-745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0696-745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing