Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization

Abstract

In order to increase the discrimination of single nucleotide polymorphisms in DNA hybridization, artificial mismatches are inserted into probe oligonucleotides using the base analog 3-nitropyrrole. Differences in thermal stability (ΔTm) between hybrids formed with normal and single-nucleotide-variant DNA targets are increased by as much as 200% over conventional hybridization, and are strongly dependent upon the spacing between mismatches. The increased specificity is demonstrated by hybridization analysis and allele-specific amplification within the HLA-DRB locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wallace, B.R., Johnson, M.J., Hirose, T., Miyake, T., Kawashima, E.H., and Itakura, K. 1981. The use of synthetic oligonucleotides as hybridization probes. Hybridization of oligonucleotides of mixed sequence to rabbit β-globin DNA. Nucl. Adds Res. 9: 879–894.

    Article  CAS  Google Scholar 

  2. Conner, B.J., Reyes, A.A., Morin, C., Itakura, K., Teplitz, R.L., and Wallace, R.B. 1983. Detection of sickle cell βs-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80: 278–282.

    Article  CAS  Google Scholar 

  3. Ikuta, S., Takagi, K., Wallace, B.R., and Itakura, K. 1987. Dissociation kinetics of 19 base paired oligonucleotide-DNA duplexes containing different single mismatch base pair. Nucl. Acids Res. 15: 797–811.

    Article  CAS  Google Scholar 

  4. Doktycz, M.J., Morris, M.D., Dormady, S.J., Beattie, K.L., and Jacobson, K.B. 1995. Optical melting of 128 octamer DNA duplexes effects of base pair location and nearest neighbors on thermal stability. J. Biol. Chem. 270: 8439–8445.

    Article  CAS  Google Scholar 

  5. Southern, E.M., Case-Green, S.C., Elder, J.K., Johnson, M., Mir, K.U., Wang, L., et al. 1994. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucl. Acids Res. 22: 1368–1373.

    Article  Google Scholar 

  6. Saiki, R.K., Walsh, P.S., Levenson, C.H., and Erlich, H.A. 1989. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86: 6230–6234.

    Article  CAS  Google Scholar 

  7. Breslauer, K.J., Frank, R., Blocker, H., and Marky, L.A. 1986. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83: 3746–3750.

    Article  CAS  Google Scholar 

  8. McGraw, R.A., Steffe, E.K., and Baxter, S.M. 1990. Sequence-dependent oligonucleotide-target duplex stabilities: rules from empirical studies with a set of twenty-mers. Bio Techniques 8: 674–678.

    CAS  Google Scholar 

  9. Tibanyenda, N., De Bruin, S.H., Haasnoot, C.A.G., Van der Marel, G.A., Van Boom, J.H., and Hilbers, C.W., 1984. The effect of single base-pair mismatches on the duplex stability of d(T-A-T-T-A-A-T-A-T-C-A-A-G-T-T-G). d(C-A-A-C-T-T-G-A-T-A-T-T-A-A-T-A). Eur. J. Biochem. 139: 19–27.

    Article  CAS  Google Scholar 

  10. Werntges, H., Steger, G., Riesner, D., and Fritz, H.-J. 1986. Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair differencies. Nucl. Acids Res. 14: 3773–3790.

    Article  CAS  Google Scholar 

  11. Wenham, P.R., Newton, C.R., and Price, W.H. 1991. Analysis of apolipoprotein E genotypes by the amplification refractory mutation system. Clln. Chem. 37: 241–244.

    CAS  Google Scholar 

  12. Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., et al. 1989. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucl. Acids Res. 17: 2503–2516.

    Article  CAS  Google Scholar 

  13. Ishikawa, Y., Tokunaga, K., Kashiwase, K., Akaza, T., Tadokoro, K. and Juji, T. 1995. Sequence-based typing of HLA-A2 alleles using a primer with an extra base mismatch. Hum. Immunol. 42: 315–318.

    Article  CAS  Google Scholar 

  14. Nichols, R., Andrews, P.C., Zhang, P., and Bergstorm, D.E. 1994. A universal nucleoside for use at ambiguous sites in DNA primers. Nature 369: 492–493.

    Article  CAS  Google Scholar 

  15. Bergstorm, D.E., Zhang, P., Toma, P.H., Andrews, P.C., and Nichols, R., 1995. Synthesis, structure, and deoxyribonucleoic acid sequencing with a universal nucleoside: 1-(2′-Deoxy-B-D-ribofuranosyl)-3-nitropyrrole. J. Am. Chem. Soc. 117: 1201–1209.

    Article  Google Scholar 

  16. Jacobs, J.W. and Fodor, S.P.A. 1994. Combinational chemistry-applications of light-directed chemical synthesis. TIBTECH 12: 19–26.

    Article  CAS  Google Scholar 

  17. Ebel, S., Lane, A.N., and Brawn, T. 1992. Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA. Biochemistry 31: 12083–12086.

    Article  CAS  Google Scholar 

  18. Leonard, G.A., Booth, E.D., and Brown, T. 1990. Structural and thermodynamic studies on the adenine/guanine mismatch in B-DNA. Nucl. Acids Res. 18: 5617–5623.

    Article  CAS  Google Scholar 

  19. Ke, S.-H. and Wartell, R.M. 1993. Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA: determination by temperature-gradient gel electrophoresis. Nud. Acids Res. 21: 5137–5143.

    Article  Google Scholar 

  20. Quo, Z., Guilfoyle, R.A., Thiel, A.J., Wang, R., and Smith, L.M. 1994. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucl. Adds Res. 22: 5456–5465.

    Article  Google Scholar 

  21. Bein, G., Glaser, R., and Kirchner, H. 1992. Rapid HLA-DRB1 genotyping by nested PCR amplification. Tissue Antigens 39: 68–73.

    Article  CAS  Google Scholar 

  22. Olerup, O. and Zetterquist, H. 1992. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225–235.

    Article  CAS  Google Scholar 

  23. Dynabeads M-280 Technical Handbook: Magnetic DNA Technology 6. 1989. Dynal Inc., Great Neck, NY.

  24. Smith, L.M., Kaiser, R.J., Sanders, J.Z., and Hood, L.E. 1987. The synthesis and use of fluorescent oligonucleotides in DNA sequence analysis. Methods Enzymol. 55: 260–301.

    Article  Google Scholar 

  25. Baxter-Lowe, L., Hunter, J., Casper, J., and Gorski, J. 1989. HLA gene amplification and hybridization analysis of polymorphism. HLA matching for bone marrow transplantation of a patent with HLA deficient severe combined Immundeficiency syndrome. J. Clin. Invest. 84: 613–618.

    Article  CAS  Google Scholar 

  26. Bodmer, J., Marsh, S., and Albert, E. 1992. Nomenclature for factors of the HLA System. Tissue Antigens 39: 161–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Liu, Q. & Smith, L. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. Nat Biotechnol 15, 331–335 (1997). https://doi.org/10.1038/nbt0497-331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0497-331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing