Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective enrichment of newly synthesized proteins for quantitative secretome analysis

Abstract

Secreted proteins constitute a large and biologically important subset of proteins that are involved in cellular communication, adhesion and migration. Yet secretomes are understudied because of technical limitations in the detection of low-abundance proteins against a background of serum-containing media. Here we introduce a method that combines click chemistry and pulsed stable isotope labeling with amino acids in cell culture to selectively enrich and quantify secreted proteins. The combination of these two labeling approaches allows cells to be studied irrespective of the complexity of the background proteins. We provide an in-depth and differential secretome analysis of various cell lines and primary cells, quantifying secreted factors, including cytokines, chemokines and growth factors. In addition, we reveal that serum starvation has a marked effect on secretome composition. We also analyze the kinetics of protein secretion by macrophages in response to lipopolysaccharides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitative analysis of cell secretomes.
Figure 2: Comparison of secretomes between cell types and treatments.
Figure 3: Interaction network of differentially secreted proteins from PC3 and WPMY-1 cells highlighting clusters of functionally related proteins.
Figure 4: Comparison of the secretomes of primary hepatocytes (PHC) and hepatoma cell lines (Hepa1-6 and Hepa1c1).
Figure 5: Kinetics of protein secretion from LPS-stimulated mouse macrophages.
Figure 6: Compendium of secreted proteins identified across all experiments in this study.

Similar content being viewed by others

References

  1. Makridakis, M. & Vlahou, A. Secretome proteomics for discovery of cancer biomarkers. J. Proteomics 73, 2291–2305 (2010).

    Article  CAS  Google Scholar 

  2. Colzani, M. et al. Metabolic labeling and protein linearization technology allow the study of proteins secreted by cultured cells in serum-containing media. J. Proteome Res. 8, 4779–4788 (2009).

    Article  CAS  Google Scholar 

  3. Finoulst, I. et al. Identification of low abundant secreted proteins and peptides from primary culture supernatants of human T-cells. J. Proteomics 75, 23–33 (2011).

    Article  CAS  Google Scholar 

  4. Dowling, P. & Clynes, M. Conditioned media from cell lines: a complementary model to clinical specimens for the discovery of disease-specific biomarkers. Proteomics 11, 794–804 (2011).

    Article  CAS  Google Scholar 

  5. Pirkmajer, S. & Chibalin, A.V. Serum starvation: caveat emptor. Am. J. Physiol. Cell Physiol. 301, C272–C279 (2011).

    Article  CAS  Google Scholar 

  6. Cooper, S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J. 17, 333–340 (2003).

    Article  CAS  Google Scholar 

  7. Hasan, N.M., Adams, G.E. & Joiner, M.C. Effect of serum starvation on expression and phosphorylation of PKC-α and p53 in V79 cells: implications for cell death. Int. J. Cancer 80, 400–405 (1999).

    Article  CAS  Google Scholar 

  8. Levin, V.A. et al. Different changes in protein and phosphoprotein levels result from serum starvation of high-grade glioma and adenocarcinoma cell lines. J. Proteome Res. 9, 179–191 (2010).

    Article  CAS  Google Scholar 

  9. Schwanhäusser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics 9, 205–209 (2009).

    Article  Google Scholar 

  10. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  Google Scholar 

  11. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  12. Kiick, K.L., Saxon, E., Tirrell, D.A. & Bertozzi, C.R. Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc. Natl. Acad. Sci. USA 99, 19–24 (2002).

    Article  CAS  Google Scholar 

  13. Sardana, G., Jung, K., Stephan, C. & Diamandis, E.P. Proteomic analysis of conditioned media from the PC3, LNCaP, and 22Rv1 prostate cancer cell lines: discovery and validation of candidate prostate cancer biomarkers. J. Proteome Res. 7, 3329–3338 (2008).

    Article  CAS  Google Scholar 

  14. Caccia, D. et al. Secretome compartment is a valuable source of biomarkers for cancer-relevant pathways. J. Proteome Res. 10, 4196–4207 (2011).

    Article  CAS  Google Scholar 

  15. Patarroyo, M., Tryggvason, K. & Virtanen, I. Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin. Cancer Biol. 12, 197–207 (2002).

    Article  CAS  Google Scholar 

  16. Manderson, A.P., Kay, J.G., Hammond, L.A., Brown, D.L. & Stow, J.L. Subcompartments of the macrophage recycling endosome direct the differential secretion of IL-6 and TNFα. J. Cell Biol. 178, 57–69 (2007).

    Article  CAS  Google Scholar 

  17. Anderson, N.L. & Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1, 845–867 (2002).

    Article  CAS  Google Scholar 

  18. Pan, C., Kumar, C., Bohl, S., Klingmueller, U. & Mann, M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol. Cell. Proteomics 8, 443–450 (2009).

    Article  CAS  Google Scholar 

  19. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  Google Scholar 

  20. Stow, J.L., Low, P.C., Offenhauser, C. & Sangermani, D. Cytokine secretion in macrophages and other cells: pathways and mediators. Immunobiology 214, 601–612 (2009).

    Article  CAS  Google Scholar 

  21. Bailey, M.J. et al. Extracellular proteomes of M-CSF (CSF-1) and GM-CSF-dependent macrophages. Immunol. Cell Biol. 89, 283–293 (2011).

    Article  CAS  Google Scholar 

  22. Burghoff, S. & Schrader, J. Secretome of human endothelial cells under shear stress. J. Proteome Res. 10, 1160–1169 (2011).

    Article  CAS  Google Scholar 

  23. Lietzén, N. et al. Quantitative subcellular proteome and secretome profiling of influenza A virus–infected human primary macrophages. PLoS Pathog. 7, e1001340 (2011).

    Article  Google Scholar 

  24. Zhu, X. et al. Dual ligand stimulation of RAW 264.7 cells uncovers feedback mechanisms that regulate TLR-mediated gene expression. J. Immunol. 177, 4299–4310 (2006).

    Article  CAS  Google Scholar 

  25. Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. & Flavell, R.A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  Google Scholar 

  26. Weis, N., Weigert, A., von Knethen, A. & Brune, B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol. Biol. Cell 20, 1280–1288 (2009).

    Article  Google Scholar 

  27. Yan, X.Q., Brady, G. & Iscove, N.N. Platelet-derived growth factor (PDGF) activates primitive hematopoietic precursors (pre-CFCmulti) by up-regulating IL-1 in PDGF receptor-expressing macrophages. J. Immunol. 150, 2440–2448 (1993).

    CAS  PubMed  Google Scholar 

  28. Jones, S.A. Directing transition from innate to acquired immunity: defining a role for IL-6. J. Immunol. 175, 3463–3468 (2005).

    Article  CAS  Google Scholar 

  29. Brunner, E. et al. A high-quality catalog of the Drosophila melanogaster proteome. Nat. Biotechnol. 25, 576–583 (2007).

    Article  CAS  Google Scholar 

  30. Klingmüller, U. et al. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst. Biol. (Stevenage) 153, 433–447 (2006).

    Article  Google Scholar 

  31. Villén, J. & Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638 (2008).

    Article  Google Scholar 

  32. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

  33. Wiśniewski, J.R., Zougman, A. & Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009).

    Article  Google Scholar 

  34. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  35. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

    Article  CAS  Google Scholar 

  36. Jain, E. et al. Infrastructure for the life sciences: design and implementation of the UniProt website. BMC Bioinformatics 10, 136 (2009).

    Article  Google Scholar 

  37. Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

    Article  CAS  Google Scholar 

  38. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  39. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

  40. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  41. Nikolsky, Y., Ekins, S., Nikolskaya, T. & Bugrim, A. A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol. Lett. 158, 20–29 (2005).

    Article  CAS  Google Scholar 

  42. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  43. Mi, H. et al. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204–D210 (2010).

    Article  CAS  Google Scholar 

  44. Thomas, P.D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the EMBL Proteomics Core Facility for expert technical assistance. This study was supported by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

K.E. and J.K. designed the study. K.E., M.W. and M.B.D. performed cell culture experiments with supervision from S.H. K.E. performed biochemical and mass spectrometric experiments. K.E. analyzed the data with input from J.K. K.E. and J.K. wrote the paper with input from all other authors.

Corresponding author

Correspondence to Jeroen Krijgsveld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1147 kb)

Supplementary Table 1

Secretome analysis of PC3 and WPMY-1 cells (XLSX 345 kb)

Supplementary Table 2

Secretome analysis of primary hepatocytes and hepatoma cell lines Hepa1-6 and Hepa1c1 (XLSX 831 kb)

Supplementary Table 3

Secretome analysis of LPS-stimulated mouse macrophages (XLSX 169 kb)

Supplementary Table 4

Compendium of human secreted proteins (XLSX 2006 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichelbaum, K., Winter, M., Diaz, M. et al. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol 30, 984–990 (2012). https://doi.org/10.1038/nbt.2356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2356

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research