Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly

Abstract

We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanochannel arrays.
Figure 2: Genome mapping.
Figure 3: Genome mapping of mixtures of 95 BACs from the PGF and COX libraries.
Figure 4: Sequence motif map of the MHC region.
Figure 5: De novo sequence assembly of the MHC region.
Figure 6: Haplotype resolution and structural variation detected by genome mapping.

References

  1. Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  Google Scholar 

  2. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    Article  CAS  Google Scholar 

  3. Fernando, M.M.A. et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4, e1000024 (2008).

    Article  Google Scholar 

  4. Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article  CAS  Google Scholar 

  5. Iafrate, A.J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article  CAS  Google Scholar 

  6. Carter, N.P. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat. Genet. 39 (suppl.), S16–S21 (2007).

    Article  CAS  Google Scholar 

  7. Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for discovering structural variation with next-generation sequencing. Nat. Methods 6, S13–S20 (2009).

    Article  CAS  Google Scholar 

  8. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article  CAS  Google Scholar 

  9. Kidd, J.M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008).

    Article  CAS  Google Scholar 

  10. Jing, J. et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc. Natl. Acad. Sci. USA 95, 8046–8051 (1998).

    Article  CAS  Google Scholar 

  11. Zhou, S. et al. Validation of rice genome sequence by optical mapping. BMC Genomics 8, 278 (2007).

    Article  Google Scholar 

  12. Zhou, S. et al. A single molecule scaffold for the maize genome. PLoS Genet. 5, e1000711 (2009).

    Article  Google Scholar 

  13. Church, D.M. et al. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol. 7, e1000112 (2009).

    Article  Google Scholar 

  14. Teague, B. et al. High-resolution human genome structure by single-molecule analysis. Proc. Natl. Acad. Sci. USA 107, 10848–10853 (2010).

    Article  CAS  Google Scholar 

  15. Wu, C.-w., Schramm, T., Zhou, S., Schwartz, D. & Talaat, A. Optical mapping of the Mycobacterium avium subspecies paratuberculosis genome. BMC Genomics 10, 25 (2009).

    Article  Google Scholar 

  16. Latreille, P. et al. Optical mapping as a routine tool for bacterial genome sequence finishing. BMC Genomics 8, 321 (2007).

    Article  Google Scholar 

  17. Chan, E.Y. et al. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Res. 14, 1137–1146 (2004).

    Article  CAS  Google Scholar 

  18. Tegenfeldt, J.O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl. Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  19. Reisner, W. et al. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94, 196101 (2005).

    Article  Google Scholar 

  20. Cao, H., Tegenfeldt, J.O., Austin, R.H. & Chou, S.Y. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett. 81, 3058–3060 (2002).

    Article  CAS  Google Scholar 

  21. Horton, R. et al. Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project. Immunogenetics 60, 1–18 (2008).

    Article  CAS  Google Scholar 

  22. Stewart, C.A. et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res. 14, 1176–1187 (2004).

    Article  CAS  Google Scholar 

  23. Das, S.K. et al. Single molecule linear analysis of DNA in nano-channel labeled with sequence specific fluorescent probes. Nucleic Acids Res. 38, e177 (2012).

    Article  Google Scholar 

  24. Xiao, M. et al. Rapid DNA mapping by fluorescent single molecule detection. Nucleic Acids Res. 35, e16 (2007).

    Article  Google Scholar 

  25. Tewhey, R., Bansal, V., Torkamani, A., Topol, E.J. & Schork, N.J. The importance of phase information for human genomics. Nat. Rev. Genet. 12, 215–223 (2011).

    Article  CAS  Google Scholar 

  26. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  Google Scholar 

  27. Suk, E.-K. et al. A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res. 21, 1672–1685 (2011).

    Article  CAS  Google Scholar 

  28. Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011).

    Article  CAS  Google Scholar 

  29. Samad, A., Huff, E.F., Cai, W. & Schwartz, D.C. Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res. 5, 1–4 (1995).

    Article  CAS  Google Scholar 

  30. Michalet, X. et al. Dynamic molecular combing: stretching the whole human genome for high-resolution studies. Science 277, 1518–1523 (1997).

    Article  CAS  Google Scholar 

  31. Erlich, R. et al. Next-generation sequencing for HLA typing of class I loci. BMC Genomics 12, 42 (2011).

    Article  CAS  Google Scholar 

  32. Pröll, J. et al. Sequence capture and next generation resequencing of the MHC region highlights potential transplantation determinants in HLA identical haematopoietic stem cell transplantation. DNA Res. 18, 201–210 (2011).

    Article  Google Scholar 

  33. Dervan, P.B. & Bürli, R.W. Sequence-specific DNA recognition by polyamides. Curr. Opin. Chem. Biol. 3, 688–693 (1999).

    Article  CAS  Google Scholar 

  34. Felsenfeld, G. & Rich, A. Studies on the formation of two- and three-stranded polyribonucleotides. Biochim. Biophys. Acta 26, 457–468 (1957).

    Article  CAS  Google Scholar 

  35. Nielsen, P.E. & Egholm, M. An introduction to peptide nucleic acid. Curr. Issues Mol. Biol. 1, 89–104 (1999).

    CAS  PubMed  Google Scholar 

  36. Nagarajan, N., Read, T.D. & Pop, M. Scaffolding and validation of bacterial genome assemblies using optical restriction maps. Bioinformatics 24, 1229–1235 (2008).

    Article  CAS  Google Scholar 

  37. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  38. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Pool and P. Ling-Fung Tang for their assistance in sequencing. O. Hampton and H. VanSteenhouse provided critical comments. This research is supported in part by US National Institutes of Health (NIH) award to P.-Y.K. and M.X. (R01 HG005946). E.T.L. was supported in part by NIH Training Grant T32 GM007175.

Author information

Authors and Affiliations

Authors

Contributions

E.T.L., M.X. and P.-Y.K. conceived the study. M.X. and P.-Y.K. supervised the project. E.T.L., C.L. and D.E. maintained BAC cultures and extracted DNA. A.H., S.K.D., M.D.A., P.D., D.E., N.N., E.L.T., H.C., M.X. and P.-Y.K. participated in data generation and analysis. E.T.L., A.H., M.X. and P.-Y.K. wrote the manuscript. All authors were involved in discussion of the manuscript.

Corresponding authors

Correspondence to Ming Xiao or Pui-Yan Kwok.

Ethics declarations

Competing interests

A.H., S.K.D., M.D.A., P.D., H.C. and M.X. are employees of the commercial company BioNano Genomics. P.-Y.K. serves as a scientific advisor at BioNano Genomics.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, E., Hastie, A., Lin, C. et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol 30, 771–776 (2012). https://doi.org/10.1038/nbt.2303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2303

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research