Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Astrocytes from familial and sporadic ALS patients are toxic to motor neurons

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease, with astrocytes implicated as contributing substantially to motor neuron death in familial (F)ALS1,2,3,4,5. However, the proposed role of astrocytes in the pathology of ALS derives in part from rodent models of FALS based upon dominant mutations within the superoxide dismutase 1 (SOD1) gene, which account for <2% of all ALS cases2,4,5. Their role in sporadic (S)ALS, which affects >90% of ALS patients, remains to be established. Using astrocytes generated from postmortem tissue from both FALS and SALS patients, we show that astrocytes derived from both patient groups are similarly toxic to motor neurons. We also demonstrate that SOD1 is a viable target for SALS, as its knockdown significantly attenuates astrocyte-mediated toxicity toward motor neurons. Our data highlight astrocytes as a non–cell autonomous component in SALS and provide an in vitro model system to investigate common disease mechanisms and evaluate potential therapies for SALS and FALS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NPCs can be differentiated into highly enriched astrocyte cultures that show a similar gene profile to spinal cord primary astrocytes.
Figure 2: Astrocytes derived from SALS and FALS patients cause motor neuron death in coculture.
Figure 3: Activation of inflammatory genes in FALS and SALS astrocytes.
Figure 4: Suppression of SOD1 in both FALS and SALS astrocytes is motor neuron protective.

Similar content being viewed by others

References

  1. Di Giorgio, F.P., Boulting, G.L., Bobrowicz, S. & Eggan, K.C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Yamanaka, K. et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marchetto, M.C. et al. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, R.H. Jr. Amyotrophic lateral sclerosis. Insights from genetics. Arch. Neurol. 54, 1246–1250 (1997).

    Article  PubMed  Google Scholar 

  7. Ilieva, H., Polymenidou, M. & Cleveland, D.W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boillee, S., Vande Velde, C. & Cleveland, D.W. ALS: a disease of motor neurons and their non-neuronal neighbors. Neuron 52, 39–59 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Boillee, S. et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Clement, A.M. et al. Wild-type non-neuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Beers, D.R. et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 103, 16021–16026 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boulting, G.L. et al. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29, 279–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C. & Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dodge, J.C. et al. Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol. Ther. 16, 1056–1064 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Palmer, T.D. et al. Cell culture. Progenitor cells from human brain after death. Nature 411, 42–43 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ray, J. & Gage, F.H. Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol. Cell. Neurosci. 31, 560–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Dodge, J.C. et al. AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol. Ther. 18, 2075–2084 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lobsiger, C.S., Boillee, S. & Cleveland, D.W. Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc. Natl. Acad. Sci. USA 104, 7319–7326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, R., Yang, B. & Zhang, D. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia 59, 946–958 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bendotti, C. et al. Inter- and intracellular signaling in amyotrophic lateral sclerosis: role of p38 mitogen-activated protein kinase. Neurodegener. Dis. 2, 128–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Miller, T.M. et al. Virus-delivered small RNA silencing sustains strength in amyotrophic lateral sclerosis. Ann. Neurol. 57, 773–776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosco, D.A. et al. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nat. Neurosci. 13, 1396–1403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gruzman, A. et al. Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 104, 12524–12529 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zetterstrom, P., Graffmo, K.S., Andersen, P.M., Brannstrom, T. & Marklund, S.L. Proteins that bind to misfolded mutant superoxide dismutase-1 in spinal cords from transgenic ALS model mice. J. Biol. Chem. 286, 20130–20136 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Foust, K.D. et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27, 59–65 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Lepore, A.C. et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–1301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hester, M.E. et al. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes. Mol. Ther. (in the press).

Download references

Acknowledgements

This work was funded by US National Institutes of Health (NIH) R01 NS644912-1A1, RC2 NS69476-01, Project A.L.S. and Packard Center for ALS Research (P2ALS) and Helping Link Foundation to B.K.K., and an NIH grant NRSAF31NS058224 to A.M.H.-P., K.M. is supported by a fellowship from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: M.E.H., A.M.H.-P., C.J.M., A.H.M.B., J.R.M. and B.K.K. Performed the experiments: M.E.H., A.M.H.-P., C.J.M., K.M., L.B., A.F., S.S., S.L., M.J.M., K.D.F., M.R., A.E., A.K. and A.C. Analyzed the data: B.K.K., M.E.H., A.M.H. and C.J.M. Wrote the manuscript: M.E.H., A.M.H.-P., C.J.M. and B.K.K with input from the other co-authors.

Corresponding author

Correspondence to Brian K Kaspar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–6 and Supplementary Figures 1–11 (PDF 5340 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haidet-Phillips, A., Hester, M., Miranda, C. et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 29, 824–828 (2011). https://doi.org/10.1038/nbt.1957

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1957

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing