Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization

Abstract

Antibody discovery typically uses hybridoma- or display-based selection approaches, which lack the advantages of directly screening spatially addressed compound libraries as in small-molecule discovery. Here we apply the latter strategy to antibody discovery, using a library of 10,000 human germline antibody Fabs created by de novo DNA synthesis and automated protein expression and purification. In multiplexed screening assays, we obtained specific hits against seven of nine antigens. Using sequence-activity relationships and iterative mutagenesis, we optimized the binding affinities of two hits to the low nanomolar range. The matured Fabs showed full and partial antagonism activities in cell-based assays. Thus, protein drug leads can be discovered using surprisingly small libraries of proteins with known sequences, questioning the requirement for billions of members in an antibody discovery library. This methodology also provides sequence, expression and specificity information at the first step of the discovery process, and could enable novel antibody discovery in functional screens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A spatially addressed antibody library for discovery and optimization.
Figure 2: Screening and identifying hits using ECL detection.
Figure 3: Affinity maturation of F0002 binding to DLL4.
Figure 4: Epitope mapping the anti-DLL4 Fabs binding sites on the DLL4 extracellular domain.
Figure 5: Assays of anti-DLL4 antibodies in cell-based assays.

Similar content being viewed by others

References

  1. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  2. Jin, A. et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15, 1088–1092 (2009).

    Article  CAS  Google Scholar 

  3. Love, J.C., Ronan, J.L., Grotenbreg, G.M., van der Veen, A.G. & Ploegh, H.L. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24, 703–707 (2006).

    Article  CAS  Google Scholar 

  4. Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotechnol. 23, 1105–1116 (2005).

    Article  CAS  Google Scholar 

  5. Huse, W.D. et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  Google Scholar 

  6. McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  7. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H.R. & Pluckthun, A. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95, 14130–14135 (1998).

    Article  CAS  Google Scholar 

  8. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  Google Scholar 

  9. Beerli, R.R. et al. Isolation of human monoclonal antibodies by mammalian cell display. Proc. Natl. Acad. Sci. USA 105, 14336–14341 (2008).

    Article  CAS  Google Scholar 

  10. Ho, M., Nagata, S. & Pastan, I. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc. Natl. Acad. Sci. USA 103, 9637–9642 (2006).

    Article  CAS  Google Scholar 

  11. Levitan, B. Stochastic modeling and optimization of phage display. J. Mol. Biol. 277, 893–916 (1998).

    Article  CAS  Google Scholar 

  12. Wang, L., Martin, B., Brenneman, R., Luttrell, L.M. & Maudsley, S. Allosteric modulators of g protein-coupled receptors: future therapeutics for complex physiological disorders. J. Pharmacol. Exp. Ther. 331, 340–348 (2009).

    Article  CAS  Google Scholar 

  13. Fodor, S.P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  14. Ziauddin, J. & Sabatini, D.M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    Article  CAS  Google Scholar 

  15. Diller, D.J. The synergy between combinatorial chemistry and high-throughput screening. Curr. Opin. Drug Discov. Devel. 11, 346–355 (2008).

    CAS  PubMed  Google Scholar 

  16. Polinsky, A. Combichem and chemoinformatics. Curr. Opin. Drug Discov. Devel. 2, 197–203 (1999).

    CAS  PubMed  Google Scholar 

  17. Kauffman, S.A. . The Origins of Order (Oxford University Press; 1993).

  18. Bachmann, M.F., Kundig, T.M., Kalberer, C.P., Hengartner, H. & Zinkernagel, R.M. How many specific B cells are needed to protect against a virus? J. Immunol. 152, 4235–4241 (1994).

    CAS  PubMed  Google Scholar 

  19. Cohn, M. & Langman, R.E. The protection: the unit of humoral immunity selected by evolution. Immunol. Rev. 115, 11–147 (1990).

    Article  CAS  Google Scholar 

  20. Xu, J.L. & Davis, M.M. Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13, 37–45 (2000).

    Article  CAS  Google Scholar 

  21. Babor, M. & Kortemme, T. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins 75, 846–858 (2009).

    Article  CAS  Google Scholar 

  22. Patten, P.A. et al. The immunological evolution of catalysis. Science 271, 1086–1091 (1996).

    Article  CAS  Google Scholar 

  23. Sethi, D.K., Agarwal, A., Manivel, V., Rao, K.V. & Salunke, D.M. Differential epitope positioning within the germline antibody paratope enhances promiscuity in the primary immune response. Immunity 24, 429–438 (2006).

    Article  CAS  Google Scholar 

  24. Thielges, M.C., Zimmermann, J., Yu, W., Oda, M. & Romesberg, F.E. Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47, 7237–7247 (2008).

    Article  CAS  Google Scholar 

  25. Yin, J., Beuscher, A.E.t., Andryski, S.E., Stevens, R.C. & Schultz, P.G. Structural plasticity and the evolution of antibody affinity and specificity. J. Mol. Biol. 330, 651–656 (2003).

    Article  CAS  Google Scholar 

  26. Zimmermann, J. et al. Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc. Natl. Acad. Sci. USA 103, 13722–13727 (2006).

    Article  CAS  Google Scholar 

  27. Nguyen, H.P. et al. Germline antibody recognition of distinct carbohydrate epitopes. Nat. Struct. Biol. 10, 1019–1025 (2003).

    Article  CAS  Google Scholar 

  28. Thomson, C.A. et al. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus. EMBO J. 27, 2592–2602 (2008).

    Article  CAS  Google Scholar 

  29. Matsuda, F. et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J. Exp. Med. 188, 2151–2162 (1998).

    Article  CAS  Google Scholar 

  30. Smider, V. & Chu, G. The end-joining reaction in V(D)J recombination. Semin. Immunol. 9, 189–197 (1997).

    Article  CAS  Google Scholar 

  31. Gilfillan, S., Benoist, C. & Mathis, D. Mice lacking terminal deoxynucleotidyl transferase: adult mice with a fetal antigen receptor repertoire. Immunol. Rev. 148, 201–219 (1995).

    Article  CAS  Google Scholar 

  32. Holt, L.J., Bussow, K., Walter, G. & Tomlinson, I.M. By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res. 28, E72 (2000).

    Article  CAS  Google Scholar 

  33. Corbett, S.J., Tomlinson, I.M., Sonnhammer, E.L., Buck, D. & Winter, G. Sequence of the human immunoglobulin diversity (D) segment locus: a systematic analysis provides no evidence for the use of DIR segments, inverted D segments, “minor” D segments or D-D recombination. J. Mol. Biol. 270, 587–597 (1997).

    Article  CAS  Google Scholar 

  34. Brezinschek, H.P. et al. Analysis of the human VH gene repertoire. Differential effects of selection and somatic hypermutation on human peripheral CD5(+)/IgM+ and CD5(−)/IgM+ B cells. J. Clin. Invest. 99, 2488–2501 (1997).

    Article  CAS  Google Scholar 

  35. Kim, D. et al. Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J. Mol. Biol. 351, 763–775 (2005).

    Article  CAS  Google Scholar 

  36. Leonard, B., Sharma, V. & Smider, V. Co-expression of antibody fab heavy and light chain genes from separate evolved compatible replicons in E. coli. J. Immunol. Methods 317, 56–63 (2006).

    Article  CAS  Google Scholar 

  37. Wollerton, M.C., Wales, R., Bullock, J.A., Hudson, I.R. & Beggs, M. Automation and optimization of protein expression and purification on a novel robotic platform. JALA 11, 291–303 (2006).

    CAS  Google Scholar 

  38. Smider, V. et al. Combinatorial antibody libraries and uses thereof. PCT/US2009/063299 (2009).

  39. Shutter, J.R. et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 14, 1313–1318 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoneya, T. et al. Molecular cloning of delta-4, a new mouse and human Notch ligand. J. Biochem. 129, 27–34 (2001).

    Article  CAS  Google Scholar 

  41. Li, J.L. et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 67, 11244–11253 (2007).

    Article  CAS  Google Scholar 

  42. Mailhos, C. et al. Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69, 135–144 (2001).

    Article  CAS  Google Scholar 

  43. Patel, N.S. et al. Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer. Clin. Cancer Res. 12, 4836–4844 (2006).

    Article  CAS  Google Scholar 

  44. Hoey, T. et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168–177 (2009).

    Article  CAS  Google Scholar 

  45. Patel, N.S. et al. Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65, 8690–8697 (2005).

    Article  CAS  Google Scholar 

  46. Segarra, M. et al. Dll4 activation of Notch signaling reduces tumor vascularity and inhibits tumor growth. Blood 112, 1904–1911 (2008).

    Article  CAS  Google Scholar 

  47. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010).

    Article  CAS  Google Scholar 

  48. Nefedova, Y., Cheng, P., Alsina, M., Dalton, W.S. & Gabrilovich, D.I. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103, 3503–3510 (2004).

    Article  CAS  Google Scholar 

  49. Purow, B.W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res. 65, 2353–2363 (2005).

    Article  CAS  Google Scholar 

  50. de Kruif, J., Boel, E. & Logtenberg, T. Selection and application of human single chain Fv antibody fragments from a semi-synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248, 97–105 (1995).

    Article  CAS  Google Scholar 

  51. Mao, S. et al. Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sialyl Lewisx and Lewisx. Proc. Natl. Acad. Sci. USA 96, 6953–6958 (1999).

    Article  CAS  Google Scholar 

  52. Marks, J.D. et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Bio/Technology 10, 779–783 (1992).

    CAS  PubMed  Google Scholar 

  53. Griffiths, A.D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  Google Scholar 

  54. Sheets, M.D. et al. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95, 6157–6162 (1998).

    Article  CAS  Google Scholar 

  55. Vaughan, T.J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  Google Scholar 

  56. Chandonia, J.M. & Brenner, S.E. The impact of structural genomics: expectations and outcomes. Science 311, 347–351 (2006).

    Article  CAS  Google Scholar 

  57. Joachimiak, A. High-throughput crystallography for structural genomics. Curr. Opin. Struct. Biol. 19, 573–584 (2009).

    Article  CAS  Google Scholar 

  58. Brooks, C.L. et al. Exploration of specificity in germline monoclonal antibody recognition of a range of natural and synthetic epitopes. J. Mol. Biol. 377, 450–468 (2008).

    Article  CAS  Google Scholar 

  59. Barbas, C.F. III et al. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. Proc. Natl. Acad. Sci. USA 91, 3809–3813 (1994).

    Article  CAS  Google Scholar 

  60. Cumbers, S.J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20, 1129–1134 (2002).

    Article  CAS  Google Scholar 

  61. Hawkins, R.E., Russell, S.J. & Winter, G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896 (1992).

    Article  CAS  Google Scholar 

  62. Jackson, J.R., Sathe, G., Rosenberg, M. & Sweet, R. In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta. J. Immunol. 154, 3310–3319 (1995).

    CAS  PubMed  Google Scholar 

  63. Wu, H. et al. Stepwise in vitro affinity maturation of Vitaxin, an alphav beta3-specific humanized mAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042 (1998).

    Article  CAS  Google Scholar 

  64. McCall, A.M. et al. Isolation and characterization of an anti-CD16 single-chain Fv fragment and construction of an anti-HER2/neu/anti-CD16 bispecific scFv that triggers CD16-dependent tumor cytolysis. Mol. Immunol. 36, 433–446 (1999).

    Article  CAS  Google Scholar 

  65. Binz, H.K., Amstutz, P. & Pluckthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23, 1257–1268 (2005).

    Article  CAS  Google Scholar 

  66. Skerra, A. Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 18, 295–304 (2007).

    Article  CAS  Google Scholar 

  67. Miller, D.J. & Rodriguez, M. A monoclonal autoantibody that promotes central nervous system remyelination in a model of multiple sclerosis is a natural autoantibody encoded by germline immunoglobulin genes. J. Immunol. 154, 2460–2469 (1995).

    CAS  PubMed  Google Scholar 

  68. Liu, Z. et al. A potent erythropoietin-mimicking human antibody interacts through a novel binding site. Blood 110, 2408–2413 (2007).

    Article  CAS  Google Scholar 

  69. Wang, J. et al. Characterization of a novel anti-DR5 monoclonal antibody WD1 with the potential to induce tumor cell apoptosis. Cell. Mol. Immunol. 5, 55–60 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Myszka from Biosensor Tools for measuring binding affinities of our Fabs using surface plasmon resonance, R. Lerner for comments on the manuscript, P. Schultz and W. Huse for useful discussions and M. Sandburg and Y. Jiang from Wintherix for their help with the FACS instrument.

Author information

Authors and Affiliations

Authors

Contributions

H.M. designed and constructed the plasmid vectors for heavy and light chain library; performed Fab library generation; designed and executed affinity maturations, including alanine-scanning mutagenesis, NNK mutagenesis and cassette mutagenesis, of F0001 and F0002; performed a small subset of library screening using ECL; conducted ECL based epitope mapping competition assay. H.M. also designed the cloning strategy for constructing the VH3-23 library with all possible germline D-J combinations, together with T.M.A.C., J.J.G., C.A.B., O.A.B. and N.P.R. made the VH3-23 library. J.J.G. performed the automated expression and purification on Piccolo. J.J.G. and V.V.S. designed the software for generating the V(D)J recombinant sequences and selecting the representative sequences for gene synthesis. T.M.A.C. performed the majority of the library screening using ECL and performed ELISA on the affinity matured Fabs with DLL4. C.A.B. performed the Fab binding assays on CHO-DLL4 cells using FACS and executed inhibition assays of NOTCH1-DLL4 interaction using ELISA and FACS. C.A.B. and O.A.B. designed and performed the Luciferase reporter assays on inhibition of NOTCH1-DLL4 interaction. N.P.R. made all DLL4 extracellular domain constructs and executed the epitope mapping with western blots, generated CHO-DLL4 cell line and helped H.M. for Fab library transformation. B.D.S. also supervised the construction of DLL4 extracellular domains. O.A.B. made the NOTCH1 reporter plasmid (p6xCBF), which was modified from an earlier reporter plasmid (p4XCBF) made by B.D.S. O.A.B. also constructed the full length IgG eukaryotic expression vectors and expressed and purified the IgGs. V.V.S. conceptualized the spatially addressed antibody library and oversaw the concept development at Fabrus. V.V.S. and H.M. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding author

Correspondence to Vaughn V Smider.

Ethics declarations

Competing interests

The authors own equity interests in Fabrus LLC.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figs. 1–3 (PDF 1618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, H., Graziano, J., Chase, T. et al. Spatially addressed combinatorial protein libraries for recombinant antibody discovery and optimization. Nat Biotechnol 28, 1195–1202 (2010). https://doi.org/10.1038/nbt.1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing