Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Programmable in situ amplification for multiplexed imaging of mRNA expression

Abstract

In situ hybridization methods enable the mapping of mRNA expression within intact biological samples1,2. With current approaches, it is challenging to simultaneously map multiple target mRNAs within whole-mount vertebrate embryos3,4,5,6, representing a significant limitation in attempting to study interacting regulatory elements in systems most relevant to human development and disease. Here, we report a multiplexed fluorescent in situ hybridization method based on orthogonal amplification with hybridization chain reactions (HCR)7. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability and sequence specificity of these amplification cascades enable multiple HCR amplifiers to operate orthogonally at the same time in the same sample. Robust performance is achieved when imaging five target mRNAs simultaneously in fixed whole-mount and sectioned zebrafish embryos. HCR amplifiers exhibit deep sample penetration, high signal-to-background ratios and sharp signal localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiplexed in situ hybridization using fluorescent HCR in situ amplification.
Figure 2: Validation of fluorescent HCR in situ amplification in fixed whole-mount zebrafish embryos.
Figure 3: Multiplexed imaging in fixed whole-mount and cross-sectioned zebrafish embryos.
Figure 4: Sharp signal localization and co-localization in fixed whole-mount zebrafish embryos.

Similar content being viewed by others

References

  1. Qian, X., Jin, L. & Lloyd, R.V. In situ hybridization: basic approaches and recent development. J. Histotechnol. 27, 53–67 (2004).

    Article  CAS  Google Scholar 

  2. Silverman, A. & Kool, E. Oligonucleotide probes for RNA-targeted fluorescence in situ hybridization. Adv. Clin. Chem. 43, 79–115 (2007).

    Article  CAS  Google Scholar 

  3. Thisse, B. et al. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. in Zebrafish: Genetics, Genomics and Informatics, vol. 77, edn. 2 (eds. Detrich, H.W., Zon, L.I. & Westerfield, M.) 505–519 (Elsevier, 2004).

  4. Denkers, N., Garcia-Villalba, P., Rodesch, C.K., Nielson, K.R. & Mauch, T.J. FISHing for chick genes: Triple-label whole-mount fluorescence in situ hybridization detects simultaneous and overlapping gene expression in avian embryos. Dev. Dyn. 229, 651–657 (2004).

    Article  CAS  Google Scholar 

  5. Barroso-Chinea, P. et al. Detection of two different mRNAs in a single section by dual in situ hybridization: A comparison between colorimetric and fluorescent detection. J. Neurosci. Methods 162, 119–128 (2007).

    Article  CAS  Google Scholar 

  6. Acloque, H., Wilkinson, D.G. & Nieto, M.A. In situ hybridization analysis of chick embryos in whole-mount and tissue sections. in Avian Embryology, 2nd Edition vol. 87 (ed. Bronner-Fraser, M.) 169–185 (Elsevier, 2008).

  7. Dirks, R.M. & Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA 101, 15275–15278 (2004).

    Article  CAS  Google Scholar 

  8. Gall, J.G. & Pardue, M.L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. USA 63, 378–383 (1969).

    Article  CAS  Google Scholar 

  9. Lawrence, J.B., Singer, R.H. & Marselle, L.M. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493–502 (1989).

    Article  CAS  Google Scholar 

  10. Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  11. Kislauskis, E.H., Li, Z., Singer, R.H. & Taneja, K.L. Isoform-specific 3′-untranslated sequences sort α-cardiac and β-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J. Cell. Biol. 123, 165–172 (1993).

    Article  CAS  Google Scholar 

  12. O'Neill, J.W. & Bier, E. Double-label in situ hybridization using biotin digoxigenin-tagged RNA probes. Biotechniques 17, 870–875 (1994).

    CAS  PubMed  Google Scholar 

  13. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  Google Scholar 

  14. Zaidi, A.U., Enomoto, H., Milbrandt, J. & Roth, K.A. Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J. Histochem. Cytochem. 48, 1369–1375 (2000).

    Article  CAS  Google Scholar 

  15. Player, A.N., Shen, L.-P., Kenny, D., Antao, V.P. & Kolberg, J.A. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 49, 603–612 (2001).

    Article  CAS  Google Scholar 

  16. Levsky, J.M., Shenoy, S.M., Pezo, R.C. & Singer, R.H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  Google Scholar 

  17. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  Google Scholar 

  18. Lambros, M.B.K., Natrajan, R. & Reis-Filho, J.S. Chromogenic and fluorescent in situ hybridization in breast cancer. Hum. Pathol. 38, 1105–1122 (2007).

    Article  CAS  Google Scholar 

  19. Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  Google Scholar 

  20. Amann, R. & Fuchs, B.M. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat. Rev. Microbiol. 6, 339–348 (2008).

    Article  CAS  Google Scholar 

  21. Larsson, C., Grundberg, I., Soderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010).

    Article  CAS  Google Scholar 

  22. Harland, R.M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685–695 (1991).

    Article  CAS  Google Scholar 

  23. Speel, E.J.M., Hopman, A.H.N. & Komminoth, P. Amplification methods to increase the sensitivity of in situ hybridization: Play CARD(S). J. Histochem. Cytochem. 47, 281–288 (1999).

    Article  CAS  Google Scholar 

  24. Feldkamp, U. & Niemeyer, C.M. Rational design of DNA nanoarchitectures. Angew Chem. Int. Ed. 45, 1856–1876 (2006).

    Article  CAS  Google Scholar 

  25. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E. & Pierce, N.A. An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2, 490–494 (2007).

    Article  Google Scholar 

  26. Choi, H.M.T. Programmable In Situ Amplification for Multiplexed Bioimaging. PhD thesis, California Institute of Technology (2009).

    Google Scholar 

  27. Simmel, F.C. & Dittmer, W.U. DNA nanodevices. Small 1, 284–299 (2005).

    Article  CAS  Google Scholar 

  28. Bath, J. & Turberfield, A.J. DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  29. Feldkamp, U. & Niemeyer, C.M. Rational engineering of dynamic DNA systems. Angew. Chem. Int. Ed. 47, 3871–3873 (2008).

    Article  CAS  Google Scholar 

  30. Yurke, B., Turberfield, A.J., Mills, J.A.P., Simmel, F.C. & Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  31. Dirks, R.M., Lin, M., Winfree, E. & Pierce, N.A. Paradigms for computational nucleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004).

    Article  CAS  Google Scholar 

  32. Zadeh, J.N., Wolfe, B.R. & Pierce, N.A. Nucleic acid sequence design via efficient ensemble defect optimization. J. Compu. Chem. published online, doi:10.1002/jcc.2163 (17 August 2010).

  33. Zadeh, J.N. et al. NUPACK: analysis and design of nucleic acid systems. J. Compu. Chem. published online, doi:10.1002/jcc.21596 (19 July 2010).

  34. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E. & Pierce, N.A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank V.A. Beck, J.S. Bois, S. Venkataraman, J.R. Vieregg and P. Yin for discussions. We thank C. Johnson and A.J. Ewald for performing preliminary studies. We thank J.N. Zadeh for the use of unpublished software. We thank the Caltech Biological Imaging Center and A. Collazo of the House Ear Institute for the use of multispectral confocal microscopes. This work was funded by the US National Institutes of Health (R01 EB006192 and P50 HG004071), the National Science Foundation (CCF-0448835 and CCF-0832824) and the Beckman Institute at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

S.E.F. and N.A.P. conceived the application of HCR to multiplexed bioimaging; H.M.T.C., J.Y.C., J.E.P. and N.A.P. engineered HCR hairpins for use in stringent hybridization buffers; H.M.T.C. and N.A.P. designed the experiments; H.M.T.C. performed the experiments; L.A.T. selected targets, provided technical guidance and performed the control experiments using traditional in situ hybridization; H.M.T.C., L.A.T., S.E.F. and N.A.P. analyzed the data; H.M.T.C. and N.A.P. wrote the manuscript; and all authors edited the manuscript.

Corresponding author

Correspondence to Niles A Pierce.

Ethics declarations

Competing interests

The authors declare competing financial interests in the form of US patents and pending US and EU patents.

Supplementary information

Supplementary Text and Figures

Supplementary Notes (PDF 23142 kb)

Supplementary Movie 1

Image stack for Figure 3b (AVI 8342 kb)

Supplementary Movie 2

Image stack for Figure 3d (AVI 4130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H., Chang, J., Trinh, L. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28, 1208–1212 (2010). https://doi.org/10.1038/nbt.1692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1692

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research