Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase

Abstract

The specificity of SCF ubiquitin ligase–mediated protein degradation is determined by F-box proteins1,2. We identified a biplanar dicarboxylic acid compound, called SCF-I2, as an inhibitor of substrate recognition by the yeast F-box protein Cdc4 using a fluorescence polarization screen to monitor the displacement of a fluorescein-labeled phosphodegron peptide. SCF-I2 inhibits the binding and ubiquitination of full-length phosphorylated substrates by SCFCdc4. A co-crystal structure reveals that SCF-I2 inserts itself between the β-strands of blades 5 and 6 of the WD40 propeller domain of Cdc4 at a site that is 25 Å away from the substrate binding site. Long-range transmission of SCF-I2 interactions distorts the substrate binding pocket and impedes recognition of key determinants in the Cdc4 phosphodegron. Mutation of the SCF-I2 binding site abrogates its inhibitory effect and explains specificity in the allosteric inhibition mechanism. Mammalian WD40 domain proteins may exhibit similar allosteric responsiveness and hence represent an extensive class of druggable target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-molecule inhibitors of the Cdc4-substrate interaction.
Figure 2: Structure analysis of the SCF-I2–Skp1-Cdc4 complex.
Figure 3: Inhibition and allosteric modulation of human WD40 domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Willems, A.R., Schwab, M. & Tyers, M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695, 133–170 (2004).

    Article  CAS  Google Scholar 

  2. Petroski, M.D. & Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  3. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  4. Nalepa, G., Rolfe, M. & Harper, J.W. Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5, 596–613 (2006).

    Article  CAS  Google Scholar 

  5. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996).

    Article  CAS  Google Scholar 

  6. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997).

    Article  CAS  Google Scholar 

  7. Patton, E.E. et al. Cdc53 is a scaffold protein for multiple Cdc34/Skp1/F-box protein complexes that regulate cell division and methionine biosynthesis in yeast. Genes Dev. 12, 692–705 (1998).

    Article  CAS  Google Scholar 

  8. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 (2008).

    Article  CAS  Google Scholar 

  9. Welcker, M. & Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  Google Scholar 

  10. Yen, H.C. & Elledge, S.J. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322, 923–929 (2008).

    Article  CAS  Google Scholar 

  11. Smith, T.F., Gaitatzes, C., Saxena, K. & Neer, E.J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999).

    Article  CAS  Google Scholar 

  12. Makarova, K.S., Wolf, Y.I., Mekhedov, S.L., Mirkin, B.G. & Koonin, E.V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626–4638 (2005).

    Article  CAS  Google Scholar 

  13. Fulop, V. & Jones, D.T. Beta propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721 (1999).

    Article  CAS  Google Scholar 

  14. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  Google Scholar 

  15. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004).

    Article  CAS  Google Scholar 

  16. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  17. Blanchard, J.E. et al. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol. 11, 1445–1453 (2004).

    Article  CAS  Google Scholar 

  18. Brunel, J.M. BINOL: a versatile chiral reagent. Chem. Rev. 105, 857–897 (2005).

    Article  CAS  Google Scholar 

  19. Barbey, R. et al. Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBO J. 24, 521–532 (2005).

    Article  CAS  Google Scholar 

  20. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  Google Scholar 

  21. Lagerstrom, M.C. & Schioth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  Google Scholar 

  22. Loew, A., Ho, Y.K., Blundell, T. & Bax, B. Phosducin induces a structural change in transducin beta gamma. Structure 6, 1007–1019 (1998).

    Article  CAS  Google Scholar 

  23. Vassilev, L.T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  Google Scholar 

  24. Fulop, V., Bocskei, Z. & Polgar, L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 94, 161–170 (1998).

    Article  CAS  Google Scholar 

  25. Juhasz, T., Szeltner, Z., Fulop, V. & Polgar, L. Unclosed beta-propellers display stable structures: implications for substrate access to the active site of prolyl oligopeptidase. J. Mol. Biol. 346, 907–917 (2005).

    Article  CAS  Google Scholar 

  26. Suel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10, 59–69 (2003).

    Article  Google Scholar 

  27. May, L.T., Leach, K., Sexton, P.M. & Christopoulos, A. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).

    Article  CAS  Google Scholar 

  28. Wullschleger, S., Loewith, R. & Hall, M.N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  Google Scholar 

  29. Hao, B., Oehlmann, S., Sowa, M.E., Harper, J.W. & Pavletich, N.P. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26, 131–143 (2007).

    Article  CAS  Google Scholar 

  30. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  33. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  34. Kleywegt, G.J. Crystallographic refinement of ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 63, 94–100 (2007).

    Article  CAS  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  36. Christie, K.R. et al. Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res. 32, D311–D314 (2004).

    Article  CAS  Google Scholar 

  37. Zdobnov, E.M. & Apweiler, R. InterProScan–an integration platform for the signaturerecognition methods in InterPro. Bioinformatics 17, 847–848 (2001).

    Article  CAS  Google Scholar 

  38. UniProt Consortium The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res. 38, D142–D148 (2010).

  39. Eddy, S.R., Mitchison, G. & Durbin, R. Maximum discrimination hidden Markov models of sequence consensus. J. Comput. Biol. 2, 9–23 (1995).

    Article  CAS  Google Scholar 

  40. Do, C.B., Mahabhashyam, M.S., Brudno, M. & Batzoglou, S. ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 15, 330–340 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Auer, J. Walton and M. Bradley for stimulating discussions. This work was supported by grants to F.S. and M.T. from the Canadian Institutes of Health Research (MOP-57795), to E.D.B. from the Ontario Research and Development Challenge Fund and to M.T. from the National Cancer Institute of Canada and the European Research Council. F.S. is supported by a Canada Research Chair in Structural Biology of Signal Transduction and M.T. is supported by a Research Chair of the Scottish Universities Life Sciences Alliance and a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Contributions

S.O., small-molecule library screen, affinity determinations and structural analysis; X.T., in vitro substrate binding and ubiquitination assays; V.N., bioinformatic analysis and sequence alignments; N.E. and E.D.B., small-molecule library screen; F.S. and M.T. conceived and directed the project, interpreted results and wrote the manuscript.

Corresponding authors

Correspondence to Frank Sicheri or Mike Tyers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3 and Supplementary Figs. 1–5 (PDF 931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlicky, S., Tang, X., Neduva, V. et al. An allosteric inhibitor of substrate recognition by the SCFCdc4 ubiquitin ligase. Nat Biotechnol 28, 733–737 (2010). https://doi.org/10.1038/nbt.1646

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1646

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing